Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T15:11:43.905Z Has data issue: false hasContentIssue false

Part II - Palaeontology and the Marine-Origin Hypothesis

Published online by Cambridge University Press:  30 July 2022

David J. Gower
Affiliation:
Natural History Museum, London
Hussam Zaher
Affiliation:
Universidade de São Paulo
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Westrum, R.. Knowledge about sea-serpents. In Wallis, R., ed., On the Margins of Science: The Social Construction of Rejected Knowledge (Staffordshire: University of Keele, 1979), pp. 293314.Google Scholar
Nigg, J., Sea Monsters . A Voyage around the World’s Most Beguiling Map (Chicago: University of Chicago Press, 2013).Google Scholar
Lee, H., Sea Monsters Unmasked (London: William Clowes and Sons, 1883).Google Scholar
Pontoppidan, E., The Natural History of Norway (London: A. Linde, 1755).Google Scholar
Oudemans, A. C., The Great Sea-Serpent. An Historical and Critical Treatise (Leiden: J. Brill, 1892).Google Scholar
Gesner, C., Historia Animalium, liber IV, qui est de piscium & aquatilium animantium natura (Zürich: Christoph Froschauer, 1558).Google Scholar
Loxton, D. and Prothero, D. R., Abominable Science! Origins of the Yeti, Nessie, and Other Famous Cryptids (New York: Columbia University Press, 2013).CrossRefGoogle Scholar
Olearius, A., Gottorffische Kunst-Cammer. (Schleswig: J. Holwein)Google Scholar
Rieppel, L., Albert Koch’s Hydrarchos craze. In Berkowitz, C., Lightman, B., eds., Science Museums in Transition (Pittsburgh: University of Pittsburgh Press, 2017), pp. 139160.CrossRefGoogle Scholar
Hoaxes, L. Rieppel, Humbugs, and frauds. Distinguishing truth from untruth in early America. Journal of the Early Republic, 38 (2018), 501529.Google Scholar
Rafinesque, C. S., Dissertation on Water Snakes, Sea Snakes, and Sea Serpents. American Monthly Magazine and Critical Review, 1 (1817), 431435.Google Scholar
Anonymous, Report of a Committee of the Linnean Society of New England, relative to a large marine animal, supposed to be a serpent, seen near Cape Ann, Massachusetts, in August 1817 (Boston: Cummings and Hilliard, 1817).Google Scholar
Peck, W., Some observations on the Sea Serpent. Memoirs of the American Academy of Arts and Sciences, 4 (1818), 8691.Google Scholar
Lyell, C., A Second Visit to the United States of North America (New York: Harper & Brothers, 1849).Google Scholar
Gould, R. T., The Case for the Sea-Serpent (London: Philip Allan, 1930).Google Scholar
Owen, R., A History of British Fossil Reptiles (London: Cassell & Co, 1849–1884).Google Scholar
Blainville, H. d., Sur un nouveau genre de Serpent, Scoliophis, et le serpent de mer vu en Amérique en 1817. Journal de Physique, de Chimie, et d’Histoire Naturelle, 86 (1818), 297304.Google Scholar
Lesueur, A., Sur le serpent nommé Scoliophis. Journal de Physique, de Chimie, et d’Histoire Naturelle, 86 (1818), 466469.Google Scholar
Buckland, F., Notes and Jottings from Animal Life (London: Smith Elder, 1886).Google Scholar
Anonymous, The Great Sea-Serpent. Nature, 47 (1893), 506507.Google Scholar
Cope, E. D., On the reptilian orders, Pythonomorpha and Streptosauria. Proceedings of the Boston Society of Natural History, 12 (1869), 250266.Google Scholar
Cope, E. D., Synopsis of the extinct Batrachia, Reptilia and Aves of North America. Transactions of the American Philosophical Society, ns, 14 (1871), 1-252, i-xxxiii.Google Scholar
Mulder, E. W. A., Transatlantic latest Cretaceous mosasaurs (Reptilia Lacertilia) from the Maastrichtian type area and New Jersey. Netherland Journal of Geosciences – Geologie en Mijnbouw, 78 (1999), 281300.Google Scholar
Bardet, N. and Jagt, J. W. M., Mosasaurus hoffmanni, le ‘Grand Animal fossile des Carrières de Maestricht’: deux siècles d’histoire. Bulletin du Muséum National d’Histoire Naturelle, 4ème série – section C – Sciences de La Terre, Paléontologie, Géologie, Minéralogie, 18 (1996), 569593.Google Scholar
Grigoriev, D. V., Giant Mosasaurus hoffmanni (Squamata, Mosasauridae) from the Late Cretaceous (Maastrichtian) of Penza, Russia. Proceedings of the Zoological Institute RAS, 318 (2014), 148167.Google Scholar
Cope, E. D., Professor Owen on the Pythonomorpha. Bulletin of the United States Geological and Geographical Survey of the Territories, 4 (1878), 299311.Google Scholar
Owen, R., On the rank and affinities in the reptilian class of the Mosasauridae, Gervais. Quarterly Journal of the Geological Society of London, 33 (1877), 682715.CrossRefGoogle Scholar
Shine, R., The serpent world. Science, 277 (1997), 19451946.CrossRefGoogle Scholar
Caldwell, M. W. and Lee, M. S. Y., A snake with legs from the marine Cretaceous of the Middle East. Nature, 386 (1997), 705709.Google Scholar
Lee, M. S. Y. and Caldwell, M. W., Anatomy and relationships of Pachyrhachis problematicus, a primitive snake with hindlimbs. Philosophical Transactions of the Royal Society of London B, 353 (1998), 15211552.Google Scholar
Carroll, R. L., Vertebrate Paleontology and Evolution (New York: W. H. Freeman, 1988).Google Scholar
Gauthier, J., Kearney, M., Maisano, J. A. et al., Assembling the squamate tree of life: Perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53 (2012), 3308.CrossRefGoogle Scholar
Lee, M. S. Y., Bell, G. L., and Caldwell, M. W., The origin of snake feeding. Nature, 400 (1999), 655659.Google Scholar
Zaher, H., The phylogenetic position of Pachyrhachis within snakes (Squamata, Lepidosauria). Journal of Vertebrate Paleontology, 18 (1998), 13.Google Scholar
Rieppel, O., Zaher, H., Tchernov, E., and Polcyn, M. J., The anatomy and relationships of Haasiophis terrasanctus, a fossil snake with well-developed hind limbs from the Mid-Cretaceous of the Middle East. Journal of Paleontology, 77 (2003), 536558.Google Scholar
Tchernov, E., Rieppel, O., Zaher, H., et al., A fossil snake with limbs. Science, 287 (2000), 20102012.Google Scholar
Rage, J.-C. and Escuillié, F., Un nouveau serpent bipède du Cénomanien (Crétacé). Implications phylétiques. Comptes Rendus de l’ Académie des Sciences Paris, Earth and Planetary Science , 330 (2000), 513520.Google Scholar
Rage, J.-C. and Escuillié, F., The Cenomanian: stage of hindlimbed snakes. Carnets Geologiques, 2003/01 (2003), 111.Google Scholar
Zaher, H. and Rieppel, O., The phylogenetic relationships of Pachyrhachis problematicus, and the evolution of limblessness in snakes (Lepidosauria, Squamata). Comptes Rendus de l’Académie des Sciences, Paris (Série IIA), Earth and Planetary Science, 329 (1999), 831837.Google Scholar
Cohn, M. J. and Tickle, C., Developmental basis of limblessness and axial patterning in snakes. Nature, 399 (1999), 474479.Google Scholar
Sanger, T. J. and Gibson-Brown, J. J., The developmental bases of limb reduction and body elongation in squamates. Evolution, 58 (2004), 21032106.Google Scholar
Woltering, J. M., Vonk, F. J., Muller, H., et al., Axial patterning in snakes and caecilians: evidence for an alternative interpretation of the Hox code. Developmental Biology, 332 (2009), 8289.Google Scholar
Tsuihiji, T., Kearney, M., and Rieppel, O., Finding the neck-trunk boundary in snakes: anteoposterior dissociation of myological characteristics in snakes and its implications for their neck and trunk body regionalization. Journal of Morphology, 273 (2012), 9921009.Google Scholar
Head, J. J. and Polly, P. D., Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature, 520 (2015), 8689.CrossRefGoogle ScholarPubMed
Martill, D. M., Tischlinger, H., and Longrich, N. R., A four-legged snake from the Early Cretaceous of Gondwana. Science, 349 (2015), 416419.CrossRefGoogle ScholarPubMed
Leal, F. and Cohn, M. J., Loss and re-emergence of legs in snakes by modular evolution of sonic hedgehog and HOXD enhancers. Current Biology, 26 (2016), 29662973.Google Scholar
Shubin, N. and Alberch, P., A morphogenetic approach to the origin and basic organization of the tetrapod limb. Evolutionary Biology, 20 (1986), 319387.Google Scholar
Leal, F. and Cohn, M. J., Developmental, genetic and genomic insights into the evolutionary loss of limbs in snakes. The Journal of Genetics and Development, 56 (2018), e23077.Google Scholar
Wiens, J. J., Brandley, M. C., and Reeder, T. W., Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution, 60 (2006), 123141.Google Scholar
Caldwell, M. W., The Origin of Snakes: Morphology and the Fossil Record (Boca Raton: CRC Press, 2020).Google Scholar
Rieppel, O. and Zaher, H., Re-building the bridge between mosasaurs and snakes. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 221 (2001), 111132.Google Scholar
Wiens, J. J., Hutter, C. R., Mulcahy, D. G., et al., Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biology Letters, 8 (2012), 10431046.Google Scholar
Streicher, J. W. and Wiens, J. J., Phylogenomic analyses of more than 4000 loci resolve the origin of snakes among lizard families. Biology Letters, 13 (2017), 20170393.Google Scholar
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502520.Google Scholar

References

Townsend, T. M., Larson, A., Louis, E., and Macey, J. R., Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Systematic Biology, 53 (2004), 735757.Google Scholar
Burbrink, F. T., Grazziotin, F. G., Pyron, R.A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502–520.Google Scholar
Estes, R., de Queiroz, K., and Gauthier, J. A.. Phylogenetic relationships within Squamata. In Estes, R. and Pregill, G. K., eds., Phylogenetic Relationships of the Lizard Families (Stanford, California: Stanford University Press, 1988), pp. 119281.Google Scholar
Lee, M. S. Y., Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships. Biological Journal of the Linnean Society, 65 (1998), 369453.Google Scholar
Conrad, J. L., Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310 (2008), 1182.Google Scholar
Rieppel, O. and Zaher, H., The intramandibular joint in squamates, and the phylogenetic relationships of the fossil snake Pachyrhachis problematicus Haas. Fieldiana Geology, 43 (2000), 169.Google Scholar
Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O., and Behlke, A., Assembling the squamate tree of life: Perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53 (2012), 3308.Google Scholar
Mulder, E. W. A., Maastricht Cretaceous finds and Dutch pioneers in vertebrate palaeontology. In Touret, J. L. R. and Visser, R. P. W., eds., Dutch Pioneers of the Earth Sciences (Amsterdam: Royal Netherlands Academy of Arts and Sciences, 2004), pp. 165–176.Google Scholar
Camper, A. G., Lettre de A.G. Camper à G. Cuvier sur les ossemens fossiles de la montagne de St. Pierre, à Maëstricht. Journal de Physique, de Chimie, et d’Histoire Naturelle, 51 (1800), 278–291.Google Scholar
Cuvier, G., Sur le grand animal fossile des carrières de Maestricht. Annales du Museum National d’Histoire Naturelle, 12 (1808), 145–176.Google Scholar
Cope, E. D., On the reptilian orders, Pythonomorpha and Streptosauria. Proceedings of the Boston Society of Natural History, 12 (1869), 250–266.Google Scholar
Camp, C. L., Classification of the lizards. Bulletin of the American Museum of Natural History, 48 (1923), 289481.Google Scholar
Russell, D. A., Systematics and morphololgy of American mosasaurs (Reptilia, Sauria). Bulletin of the Peabody Museum of Natural History, 23 (1967), 1241.Google Scholar
Nopcsa, F., Über die varanusartigen lacerten Istriens. Beiträge zur Paläontologie Österreich-Ungarns und des Orients, 15 (1903), 3142.Google Scholar
Nopcsa, F., Eidolosaurus und Pachyophis: Zwei neue Neocom-Reptilien. Palaeontographica, 65 (1923), 99154.Google Scholar
McDowell, S. B. and Bogert, C. M., The systematic position of Lanthanotus and the affinities of the anguinomorphan lizards. Bulletin of the American Museum of Natural History, 105 (1954), 1142.Google Scholar
Lee, M. S. Y., The phylogeny of varanoid lizards and the affinities of snakes. Philosophical Transactions of the Royal Society of London, B352 (1997), 5391.Google Scholar
Caldwell, M. W. and Lee, M. S. Y., A snake with legs from the marine Cretaceous of the Middle East. Nature, 386 (1997), 705709.Google Scholar
Lee, M. S. Y. and Caldwell, M. W., Anatomy and relationships of Pachyrhachis problematicus, a primitive snake with hindlimbs. Philosophical Transactions of the Royal Society of London. B353 (1998), 15211552.Google Scholar
Lee, M. S. Y., Bell, G. L., and Caldwell, M. W., The origin of snake feeding. Nature, 400 (1999), 655659.CrossRefGoogle Scholar
Zaher, H., The phylogenetic position of Pachyrhachis within snakes (Squamata, Lepidosauria). Journal of Vertebrate Paleontology, 18 (1998), 13.Google Scholar
Zaher, H. and Rieppel, O., Tooth implantation and replacement in squamates, with special reference to mosasaur lizards and snakes. American Museum Novitates, 3271 (1999), 119.Google Scholar
Zaher, H. and Rieppel, O., The phylogenetic relationships of Pachyrhachis problematicus, and the evolution of limblessness in snakes (Lepidosauria, Squamata). Comptes Rendus de Séances de l’Académie des Sciences (Série IIA), Earth and Planetary Science, 329 (1999), 831837.Google Scholar
Rieppel, O. and Zaher, H., The braincases of mosasaurs and Varanus, and the relationships of snakes. Zoological Journal of the Linnean Society, 129 (2000), 489514.Google Scholar
Rieppel, O. and Kearney, M., The origin of snakes: limits of a scientific debate. Biologist (London), 48 (2001), 110114.Google Scholar
Caldwell, M. W. and Cooper, J. A., Redescription, palaeobiogeography and palaeoecology of Coniasaurus crassidens Owen, 1850 (Squamata) from the Lower Chalk (Cretaceous; Cenomanian) of SE England. Zoological Journal of the Linnean Society, 127 (1999), 423452.Google Scholar
Caldwell, M. W., Description and phylogenetic relationships of a new species of Coniasaurus Owen, 1850 (Squamata). Journal of Vertebrate Paleontology, 19 (1999), 438455.Google Scholar
Caldwell, M. W., On the aquatic squamate Dolichosaurus longicollis Owen, 1850 (Cenomanian, Upper Cretaceous), and the evolution of elongate necks in squamates. Journal of Vertebrate Paleontology, 20 (2000), 720735.Google Scholar
Caldwell, M. W., A new species of Pontosaurus (Squamata, Pythonomorpha) from the Upper Cretaceous of Lebanon and a phylogenetic analysis of Pythonomorpha. Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 34 (2006), 142.Google Scholar
Pierce, S. E. and Caldwell, M. W., Redescription and phylogenetic position of the Adriatic (Upper Cretaceous; Cenomanian) dolichosaur Pontosaurus lesinensis (Kornhuber, 1873). Journal of Vertebrate Paleontology, 24 (2004), 373386.Google Scholar
Paparella, I., Palci, A., Nicosia, U., and Caldwell, M. W., A new fossil marine lizard with soft tissues from the Late Cretaceous of southern Italy. Royal Society Open Science, 5 (2018), 172411.Google Scholar
Garberoglio, F. F., Apesteguía, S., Simões, T. R., et al., New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan. Science Advances, 5 (2019), eaax5833.Google Scholar
Mekarski, M. C., Japundžić, D., Krizmanić, K., and Caldwell, M. W., Description of a new basal mosasauroid from the Late Cretaceous of Croatia, with comments on the evolution of the mosasauroid forelimb. Journal of Vertebrate Paleontology, 39 (2019), e1577872.Google Scholar
Caldwell, M. W., Carroll, R. L., and Kaiser, H., The pectoral girdle and forelimb of Carsosaurus marchesetti [sic] (Aigialosauridae), with a preliminary phylogenetic analysis of mosasauroids and varanoids. Journal of Vertebrate Paleontology, 15 (1995), 516531.Google Scholar
Bell, G. L., Jr. A phylogenetic revision of North American and Adriatic Mosasauroidea. In Callaway, J. M. and Nicholls, E. L., eds., Ancient Marine Reptiles (New York: Academic Press, 1997), pp. 293332.Google Scholar
Palci, A. and Caldwell, M. W., Redescription of Acteosaurus tommasinii von Meyer, 1860, and a discussion of evolutionary trends within the clade Ophidiomorpha. Journal of Vertebrate Paleontology, 30 (2010), 94108.Google Scholar
deBraga, M. and Carroll, R. L., The origin of mosasaurs as a model of macroevolutionary patterns and processes. Evolutionary Biology, 27 (1993), 245322.Google Scholar
Caldwell, M. W., Squamate phylogeny and the relationships of snakes and mosasauroids. Zoological Journal of the Linnean Society, 125 (1999), 115147.Google Scholar
Páramo-Fonseca, M. E., Yaguarasaurus columbianus (Reptilia, Mosasauridae), a primitive mosasaur from the Turonian (Upper Cretaceous) of Colombia. Historical Biology, 14 (2000), 121131.Google Scholar
Lee, M. S. Y. and Caldwell, M. W., Adriosaurus and the affinities of mosasaurs, dolichosaurs, and snakes. Journal of Paleontology, 74 (2000), 915937.Google Scholar
Konishi, T. and Caldwell, M. W., New specimens of Platecarpus planifrons (Cope, 1874) (Squamata: Mosasauridae) and a revised taxonomy of the genus. Journal of Vertebrate Paleontology, 27 (2007), 5972.Google Scholar
Bardet, N., Pereda Suberbiola, X., and Jalil, N.-E., A new mosasauroid (Squamata) from the Late Cretaceous (Turonian) of Morocco. Comptes Rendus Palevol, 2 (2003), 607616.Google Scholar
Camp, C. L., California mosasaurs. Memoirs of the University of California, 13 (1942), 168.Google Scholar
Rieppel, O., Gauthier, J. A., and Maisano, J. A., Comparative morphology of the dermal palate in squamate reptiles, with comments on phylogenetic implications. Zoological Journal of the Linnean Society, 152 (2008), 131152.Google Scholar
Conrad, J. L., Skull, mandible, and hyoid of Shinisaurus crocodilurus Ahl (Squamata, Anguimorpha). Zoological Journal of the Linnean Society, 141 (2004), 399434.Google Scholar
Bell, B. A., Murry, P. A., and Osten, L. W., Coniasaurus Owen, 1850 from North America. Journal of Paleontology, 56 (1982), 520534.Google Scholar
Polcyn, M. J. and Bell, G. L., Jr., Russelosaurus coheni, n. gen., n. sp., a 92 million-year-old mosasaur from Texas (USA), and the definition of the parafamily Russellosaurina. Netherlands Journal of Geosciences, 84 (2005), 321334.Google Scholar
Dortangs, R. W., Schulp, A. S., Mulder, E. W. A., et al., A large new mosasaur from the Upper Cretaceous of The Netherlands. Netherlands Journal of Geosciences, 81 (2002), 18.Google Scholar
Rieppel, O. and Zaher, H., Re-building the bridge between mosasaurs and snakes. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 221 (2001), 111132.Google Scholar
Konishi, T., Caldwell, M. W., Nishimura, T., Sakurai, K., and Tanoue, K., A new halisaurine mosasaur (Squamata: Halisaurinae) from Japan: the first record in the western Pacific realm and the first documented insights into binocular vision in mosasaurs. Journal of Systematic Palaeontology, 14 (2016), 809839.Google Scholar
Polcyn, M. J., Lindgren, J., Bardet, N., et al., Description of new specimens of Halisaurus arambourgi Bardet & Pereda Suberbiola, 2005 and the relationships of Halisaurinae. Bulletin de la Société Géologique de France, 183 (2012), 123136.Google Scholar
Christensen, C. B., Christensen-Dalsgaard, J., Brandt, C., and Madsen, P. T., Hearing with an atympanic ear: good vibration and poor sound-pressure detection in the royal python, Python regius . Journal of Experimental Biology, 215 (2012), 331342.Google Scholar
Holliday, C. M., Gardner, N. M., Paesani, S. M., Douthitt, M., and Ratliff, J. L., Microanatomy of the mandibular symphysis in lizards: patterns in fiber orientation and Meckel’s cartilage and their significance in cranial evolution. Anatomical Record, 293 (2010), 13501359.Google Scholar
Lessmann, M. H., Zur labialen Pleurodontie an Lacertilier-Gebissen. Anatomischer Anzeiger, 99 (1952), 3567.Google Scholar
Bertin, T. J., Thivichon-Prince, B., LeBlanc, A. R., Caldwell, M. W., and Viriot, L., Current perspectives on tooth implantation, attachment, and replacement in Amniota. Frontiers in Physiology, 9 (2018), 1630.Google Scholar
Gauthier, J. A., Fossil xenosaurid and anguid lizards from the early Eocene Wasatch Formation, southeast Wyoming, and a revision of the Anguioidea. Contributions to Geology, University of Wyoming, 21 (1982), 754.Google Scholar
Polcyn, M. J., Tchernov, E., and Jacobs, L. L., The Cretaceous biogeography of the eastern Mediterranean with a description of a new basal mosasauroid from ‘Ein Yabrud, Israel. In Tomida, Y., Rich, T. H. and Vickers-Rich, P., eds., Proceedings of the Second Gondwanan Dinosaur Symposium (National Science Museum Monograph 15), (Tokyo: National Science Museum, 1999), pp. 259290.Google Scholar
Haber, A. and Polcyn, M. J., A new marine varanoid from the Cenomanian of the Middle East. Netherlands Journal of Geosciences, 84 (2005), 247255.Google Scholar
Rieppel, O., Tooth replacement in anguinomorph lizards. Zoomorphologie, 91 (1978), 7790.Google Scholar
Kelley, N. P. and Pyenson, N. D., Evolutionary innovation and ecology in marine tetrapods from the Triassic to the Anthropocene. Science, 348 (2015), aaa3716.Google Scholar
Houssaye, A., Palaeoecological and morphofunctional interpretation of bone mass increase: an example in Late Cretaceous shallow marine squamates. Biological Reviews, 88 (2013), 117139.Google Scholar
Caldwell, M. W., Ontogeny and phylogeny of the mesopodial skeleton in mosasauroid reptiles. Zoological Journal of the Linnean Society, 116 (1996), 407436.Google Scholar
Rieppel, O., Helveticosaurus zollingeri Peyer (Reptilia, Diapsida) skeletal paedomorphosis, functional anatomy and systematic affinities. Palaeontographica Abteilung A, Paläozoologie, Stratigraphie, 208 (1989), 123152.Google Scholar
Bell, G. L. and Polcyn, M. J., Dallasaurus turneri, a new primitive mosasauroid from the Middle Turonian of Texas and comments on the phylogeny of Mosasauridae (Squamata). Netherlands Journal of Geosciences, 84 (2005), 177194.Google Scholar
Sullivan, C., The role of calcaneal ‘heel’ as a propulsive lever in basal archosaurs and extant monitor lizards. Journal of Vertebrate Paleontology, 30 (2010), 14221432.Google Scholar
Houssaye, A., Lindgren, J., Pellegrini, R., et al., Microanatomical and histological features in the long bones of mosasaurine mosasaurs (Reptilia, Squamata) – implications for aquatic adaptation and growth rates. PLoS ONE, 8 (2013), e76741.Google Scholar
Rieppel, O., Zaher, H., Tchernov, E., and Polcyn, M. J., The anatomy and relationships of Haasiophis terrasanctus, a fossil snake with well-developed hind limbs from the Mid-Cretaceous of the Middle East. Journal of Paleontology, 77 (2003), 536558.Google Scholar

References

Evans, S. E., Manabe, M., Noro, M., Isajis, S., and Yamaguchi, M., A longbodied lizard from the Lower Cretaceous of Japan. Paleontology, 49 (2006), 11431165.Google Scholar
Polcyn, M. J., Tchernov, E., and Jacobs, L. L., The Cretaceous biogeography of the eastern Mediterranean with a description of a new basal mosasauroid from ‘Ein Yabrud, Israel. In Tomida, Y., Rich, T.H. and Vickers–Rich, P., eds., Proceedings of the Second Gondwanan Dinosaur Symposium (1999), pp. 259290.Google Scholar
Russell, D. A., Systematics and morphology of American mosasaurs. Bulletin of the Peabody Museum of Natural History, 23 (1967), 1241.Google Scholar
DeBraga, M. and Carroll, R. L., The origin of mosasaurs as a model of macroevolutionary patterns and processes. Evolutionary Biology, 27 (1993), 245322.Google Scholar
Polcyn, M. J., Jacobs, L. L., Araújo, R., Schulp, A. S., and Mateus, O., Physical drivers of mosasaur evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 400 (2014), 1727.Google Scholar
Gallagher, W. B., Miller, K. G., Sherrell, R. M., et al., On the last mosasaurs: Late Maastrichtian mosasaurs and the Cretaceous-Paleogene boundary in New Jersey. Bulletin de la Société Géologique de France, 183 (2012), 145150.Google Scholar
Pieters, F. F., Rompen, P. G., Jagt, J. W., and Bardet, N., A new look at Faujas de Saint-Fond’s fantastic story on the provenance and acquisition of the type specimen of Mosasaurus hoffmanni Mantell, 1829. Bulletin de la Société géologique de France, 183 (2012), 5565.Google Scholar
Carroll, R. L. and Debraga, M., Aigialosaurs: mid-Cretaceous varanoid lizards. Journal of Vertebrate Paleontology, 12 (1992), 6686.Google Scholar
Lingham-Soliar, T., Anatomy and functional morphology of the largest marine reptile known, Mosasaurus hoffmanni (Mosasauridae, Reptilia) from the Upper Cretaceous, Upper Maastrichtian of the Netherlands. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 347 (1995), 155172.Google Scholar
Bell, G. L., A phylogenetic revision of North American and Adriatic Mosasauroidea. In Callaway, J. M. and Nicholls, E. L., eds., Ancient Marine Reptiles (Academic Press: Cambridge, 1997), pp. 293332.Google Scholar
Rieppel, O. and Zaher, H., The intramandibular joint in squamates, and the phylogenetic relationships of the fossil snake Pachyrhachis problematicus Haas. Fieldiana Geology, 43 (2000), 169.Google Scholar
Bardet, N. S., Suberbiola, X. P., Iarochene, M., Bouya, B., and Amaghzaz, M., A new species of Halisaurus from the Late Cretaceous phosphates of Morocco, and the phylogenetical relationships of the Halisaurinae (Squamata: Mosasauridae). Zoological Journal of the Linnean Society, 143 (2005), 447472.Google Scholar
Bell, G. L. and Polcyn, M. J., Dallasaurus turneri, a new primitive mosasauroid from the Middle Turonian of Texas and comments on the phylogeny of Mosasauridae (Squamata). Netherlands Journal of Geosciences, 84, Special Issue 3 (2005), 177194.Google Scholar
Lindgren, J., The first record of Hainosaurus (Reptilia: Mosasauridae) from Sweden. Journal of Paleontology, 79 (2005), 11571165.Google Scholar
Conrad, J. L., Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310 (2008), 1182.Google Scholar
Caldwell, M. W. and Palci, A., A new species of marine ophidiomorph lizard, Adriosaurus skrbinensis, from the Upper Cretaceous of Slovenia. Journal of Vertebrate Paleontology, 30 (2010), 747755.Google Scholar
Conrad, J. L., Ast, J. C., Montanari, S., and Norell, M. A., A combined evidence phylogenetic analysis of Anguimorpha (Reptilia: Squamata). Cladistics, 27 (2011), 230277.Google Scholar
Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O., and Behlke, A., Assembling the squamate tree of life: Perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53 (2012), 3308.Google Scholar
Madzia, D. and Conrad, J., Mosasauridae. In de Queiroz, K. C., Cantino, P. D. and Gauthier, J. A., eds., Phylonyms: A Companion to the PhyloCode (Boca Raton: CRC Press, 2020), pp. 11031108.Google Scholar
Gervais, P., Zoologie et Paléontologie Generale (Paris: A. Bertrand, 1852).Google Scholar
Gorjanović-Kramberger, K., Aigialosaurus, eine neue Eidechse aus den Kreideschiefern der Insel Lesina, mit Rücksicht auf die bereits beschriebenen Lacertiden von Comen und Lesina. Glasnik hrvatskoga naravoslovnoga drustva (Societas historico-naturalis croatica) u Zagrebu, 7 (1892), 74106.Google Scholar
Polcyn, M. J. and Bell, G. L., Coniasaurus crassidens and its bearing on varanoid-mosasauroid relationships. Journal of Vertebrate Paleontology, Supplement , 14 (1994), 42A.Google Scholar
Caldwell, M. W., Squamate phylogeny and the relationships of snakes and mosasauroids. Zoological Journal of the Linnean Society, 125 (1999), 115147.Google Scholar
Reeder, T. W., Townsend, T. M., Mulcahy, D. G., et al., Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS One, 10 (2015), e0118199.Google Scholar
Lee, M. S. Y. and Caldwell, M. W., Adriosaurus and the affinities of mosasaurs, dolichosaurs, and snakes. Journal of Paleontology, 74 (2000), 915937.Google Scholar
Pierce, S. and Caldwell, M. W., Redescription and phylogenetic position of the Adriatic (Upper Cretaceous; Cenomanian) dolichosaur, Pontosaurus lesinensis (Kornhuber, 1873). Journal of Vertebrate Paleontology, 24 (2004), 376389.Google Scholar
Caldwell, M. W., Description and phylogenetic relationships of a new species of Coniasaurus Owen, 1850 (Squamata). Journal of Vertebrate Paleontology, 19 (1999), 438455.Google Scholar
Lee, M. S. Y. and Scanlon, J. D., The Cretaceous marine squamate Mesoleptos and the origin of snakes. Bulletin of the Natural History Museum London (Zoology Series), 68 (2002), 131142.Google Scholar
Haber, A. and Polcyn, M. J., A new marine varanoid from the Cenomanian of the Middle East. Netherlands Journal of Geosciences, 84, Special Issue 3 (2005), 247255 Google Scholar
Jacobs, L. L., Ferguson, K., Polcyn, M. J., and Rennison, C., Cretaceous δ[13]C stratigraphy and the age of dolichosaurs and early mosasaurs. Netherlands Journal of Geosciences, 84, Special Issue 3 (2005), 257268.Google Scholar
Mekarski, M. C., Japundžić, D., Krizmanić, K., and Caldwell, M. W., Description of a new basal mosasauroid from the Late Cretaceous of Croatia, with comments on the evolution of the mosasauroid forelimb. Journal of Vertebrate Paleontology, 39 (2019), DOI: 10.1080/02724634.2019.1577872.Google Scholar
Caldwell, M. W. and Lee, M. S. Y., Reevaluation of the Cretaceous marine lizard Acteosaurus crassicostatus Calligaris, 1993 . Journal of Paleontology, 78 (2004), 617619.Google Scholar
Seiffert, J., Upper Jurassic lizards from central Portugal. Memórias do Serviço Geológico de Portugal (Nova Série), 22 (1973), 185.Google Scholar
Polcyn, M. J. and Bell, G. L., Russellosaurus coheni n. gen., n. sp., a 92 million-year-old mosasaur from Texas (USA), and the definition of the parafamily Russellosaurina. Netherlands Journal of Geosciences, 84, Special Issue 3 (2005), 321333.Google Scholar
Dutchak, A. R., A review of the taxonomy and systematic of aigialosaurs. Netherlands Journal of Geosciences, 84, Special Issue 3 (2005), 221229.Google Scholar
Dutchak, A.R. and Caldwell, M.W., A redescription of Aigialosaurus (= Opetiosaurus) bucchichi (Kornhuber, 1901) (Squamata: Aigialosauridae) with comments on mosasauroid systematics. Journal of Vertebrate Paleontology, 29 (2009), 437452.Google Scholar
Smith, K. T. and Buchy, M. L., A new aigialosaur (Squamata: Anguimorpha) with soft tissues remains from the Upper Cretaceous of Nuevo León, Mexico. Journal of Vertebrate Paleontology, 28 (2008), 8594.Google Scholar
McDowell, S. B. and Bogert, C. M., The systematic position of Lanthanotus and the affinities of the anguinomorphan lizards. Bulletin of the American Museum of Natural History, 105 (1954), 1142.Google Scholar
Rieppel, O., The Phylogeny of Anguinomorph Lizards (Basel: Birkhauser Verlag, 1980).Google Scholar
Estes, R., de Queiroz, K., and Gauthier, J. A., Phylogenetic relationships within Squamata. In Estes, R. P., ed., Phylogenetic Relationships of the Lizard Families (Stanford University Press: Stanford, 1988), pp. 119282.Google Scholar
Cuvier, G. C. F., Sur le grand animal fossile des carriéres de Maestricht. Annales du Muséum National d’Histoire Naturelle, 12 (1808) 145176.Google Scholar
Mantell, G., A tabular arrangement of the organic remains of the county of Sussex. Transactions of the Geological Society of London, 3 (1829), 201216.Google Scholar
Goldfuss, A., The skull structure of the Mosasaurus, explained by means of a description of a new species of this genus. Transactions of the Kansas Academy of Science, 116 (2013), 2746.Google Scholar
Owen, R., Description of the fossil reptiles of the Chalk Formation. In Dixon, F., ed., The geology and fossils of the Tertiary and Cretaceous Formations of Sussex (Longman, Brown, Green, and Longman: London, 1850), pp. 378404.Google Scholar
Cope, E. D., On the reptilian orders, Pythonomorpha and Streptosauria. Proceedings of the Boston Society of Natural History, 12 (1869), 250266.Google Scholar
Owen, R., On the rank and affinities in the reptilian class of the Mosasauridae, Gervais. Quarterly Journal of the Geological Society of London, 33 (1877), 682715.Google Scholar
Marsh, O. C., New characters of mosasauroid reptiles. American Journal of Science, 19 (1880, 8387.Google Scholar
Baur, G. H. C. L., On the characters and systematic position of the large sea-lizards, Mosasauridae. Science, 405 (1890), 262.Google Scholar
Williston, S. W., The relationships and habits of the mosasaurs. The Journal of Geology, 12 (1904), 4351.Google Scholar
Nopcsa, F., Eidolosaurus und Pachyophis, zwei neue Neocom-Reptilien. Palaeontographica, 65 (1923), 99154.Google Scholar
Boulenger, G. A., Notes on the osteology of Heloderma horridum and H. suspectum, with remarks on the systematic position of the Helodermatidæ and on the vertebræ of the Lacertilia. Proceedings of the Zoological Society of London, 59 (1891), 109–118.Google Scholar
Cope, E. D., Reply to Dr. Bauer’s critique on my paper on the paroccipital bone of the scaled reptiles and the systematic position of the Pythonomorpha. American Naturalist, 29 (1895), 10031005.Google Scholar
Osborn, H. F., A complete mosasaur skeleton, osseous and cartilaginous. Bulletin of the American Museum of Natural History, 1 (1899), 167188.Google Scholar
Fejérváry, G. J., Contributions to a monography on fossil Varanidae and on Megalanidae. Annales Historico-Naturales Musei Nationalis Hungarici, 16 (1918), 341467.Google Scholar
Camp, C. L., Classification of the lizards. Bulletin of the American Museum of Natural History, 48 (1923), 289-481.Google Scholar
Bellairs, A. A., Observations on the snout of Varanus, and a comparison with that of other lizards and snakes. Journal of Anatomy, 83 (1949), 116.Google Scholar
Underwood, G., Lanthanotus and the anguinomorphan lizards: a critical review. Copeia, 1957 (1957), 2030.Google Scholar
Borsuk-Białlynicka, M., Anguimorphans and related lizards from the Late Cretaceous of the Gobi Desert, Mongolia. Palaeontologica Polonica, 46 (1984), 5105.Google Scholar
Lee, M. S. Y., The phylogeny of varanoid lizards and the affinities of snakes. Philosophical Transactions of the Royal Society of London, Series B, 352 (1997), 5391.Google Scholar
Caldwell, M. W., The Origin of Snakes: Morphology and the Fossil Record (Boca Raton: CRC Press, 2020).Google Scholar
Caldwell, M. W., A New Species of ‘Pontosaurus’ (Squamata, Pythonomorpha) from the Upper Cretaceous of Lebanon and a phylogenetic analysis of Pythonomorpha. Società Italiana di Scienze Naturali, 34 (2006), 144.Google Scholar
Paparella, I., Palci, A., Nicosia, U. and Caldwell, M. W., A new fossil marine lizard with soft tissues from the Late Cretaceous of southern Italy. Royal Society Open Science, 6 (2018), 172411.Google Scholar
Simões, T. R., Caldwell, M. W., Tałanda, M., et al., The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature, 557 (2018), 706709.Google Scholar
Palci, A. and Caldwell, M. W., Redescription of Acteosaurus tommasinii von Meyer, 1860, and a discussion of evolutionary trends within the clade Ophidiomorpha. Journal of Vertebrate Paleontology, 30 (2010), 94108.Google Scholar
Cornalia, E. and Chiozza, L., Cenni geologici sull’ Istria. Giornale dell’ I. R. Instituto Lombardo, 3 (1852), 135.Google Scholar
von Meyer, H., Acteosaurus tommasinii aus dem schwarzen Kreide-Schiefer von Comen am Karste. Palaeontographica, 7 (1860), 223231.Google Scholar
Kornhuber, A., Carsosaurus Marchesettii, ein neuer fossiler Lacertilier aus den Kreideschichten des Karstes bei Komen. Abhandlungen der kaiserlich-königlichen geologischen Reichsanstalt zu Wien, 17 (1893), 115.Google Scholar
Kornhuber, A., A., Opetiosaurus Bucchichi, eine neue fossile Eidechse aus der unteren Kreide von Lesina in Dalmatien. Abhandlungen der kaiserlich-königlichen geologischen Reichsanstalt zu Wien, 17 (1901), 124.Google Scholar
Calligaris, R., Acteosaurus crassicostatus nuova specie di Dolichosauridae negli Strati Calcarei Ittiolitici di Comeno. Atti Museo Civico di Storia Naturale di Trieste, 45 (1993), 2934.Google Scholar
Hallermann, J., The ethmoidal region of Dibamus taylori (Squamata: Dibamidae), with a phylogenetic hypothesis on dibamid relationships within Squamata. Zoological Journal of the Linnean Society, 122 (1998), 385426.Google Scholar
Evans, S. E. and Barbadillo, L. J., A shortlimbed lizard from the Lower Cretaceous of Spain. Special Papers in Palaeontology, 60 (1999), 7385.Google Scholar
Gao, K. Q. and Norell, M. A., Taxonomic revision of Carusia (Reptilia: Squamata) from the Late Cretaceous of the Gobi Desert, and phylogenetic relationships of anguimorphan lizards. American Museum Novitates, 3230 (1998), 151.Google Scholar
Rieppel, O., Conrad, J. L., and Maisano, J. A., New morphological data for Eosaniwa koehni Haubold, 1977 and a revised phylogenetic analysis. Journal of Paleontology, 81 (2007), 760769.Google Scholar
Yi, H. Y. and Norell, M. A., New materials of Estesia mongoliensis (Squamata: Anguimorpha) and the evolution of venom grooves in lizards. American Museum Novitates, 3767 (2013), 131.Google Scholar
Vidal, N. and Hedges, S.B., The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. Comptes Rendus Biologies, 328 (2005), 10001008.Google Scholar
Wiens, J. J., Kuczynski, C. A., Townsend, T., et al., Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Systematic Biology, 59 (2010), 674688.Google Scholar
Pyron, R. A., Burbrink, F.T., and Wiens, J. J., A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13 (2013), 153.Google Scholar
Streicher, J. W. and Wiens, J. J., Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families. Biological Letters, 13 (2017), e20170393.Google Scholar
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502520.Google Scholar
Townsend, T. M., Larson, A., Louis, E., and Macey, J. R., Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Systematic Biology, 53 (2004), 735757.Google Scholar
Vidal, N. and Hedges, S.B., The molecular evolutionary tree of lizards, snakes, and amphisbaenians. Comptes Rendus Biologies, 332 (2009), 129139.Google Scholar
Simões, T. R., Vernygora, O., Caldwell, M. W., and Pierce, S. E., Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles. Nature Communications, 11 (2020), 114.Google Scholar
Simões, T. R., Caldwell, M. W., Palci, A., and Nydam, R. L., Giant taxon‐character matrices: quality of character constructions remains critical regardless of size. Cladistics, 33 (2017) 198219.Google Scholar
Simões, T. R., Vernygora, O., Paparella, I., Jimenez-Huidobro, P., and Caldwell, M. W., Mosasauroid phylogeny under multiple phylogenetic methods provides new insights on the evolution of aquatic adaptations in the group. PLoS ONE, 12 (2017), e0176773.Google Scholar
Laing, A. M., Doyle, S., Gold, M. E. L., et al., Giant taxon-character matrices: The future of morphological systematics. Cladistics, 34 (2017), 333335.Google Scholar
Madzia, D. and Cau, A., Inferring ‘weak spots’ in phylogenetic trees: application to mosasauroid nomenclature. PeerJ, 5 (2017), e3782.Google Scholar
Simões, T. R., Caldwell, M. W., Palci, A., and Nydam, R. L., Giant taxon-character matrices II: a response to Laing et al. (2017). Cladistics, 34 (2017), 702707.Google Scholar
Gauthier, J. A., Kluge, A. G., and Rowe, T., Amniote phylogeny and the importance of fossils. Cladistics, 4 (1988), 105209.Google Scholar
Donoghue, M. J., Doyle, J. A., Gauthier, J., Kluge, A. G., and Rowe, T., The importance of fossils in phylogeny reconstruction. Annual Review of Ecology and Systematics. 20 (1989), 431460.Google Scholar
Mekarski, M. M., The Origin and Evolution of Aquatic Adaptations in Cretaceous Squamates (Unpublished PhD Thesis: University of Alberta, 2017).Google Scholar
Diedrich, C., Ein dentale von Coniosaurus crassidens Owen (Varanoidea) aus dem Ober-Cenoman von Halle/Westf (NW-Deutschland). Geologie und Paläontologie in Westfalen, 47 (1997), 4351.Google Scholar
Scanlon, J. D. and Hocknull, S.A., A dolichosaurid lizard from the latest Albian (mid-Cretaceous) Winton Formation, Queensland, Australia. Transactions of the Kansas Academy of Science, Fort Hays Studies Special Issue – Proceedings of the Second Mosasaur Meeting (2008), 131–136.Google Scholar
Goloboff, P. A. and Catalano, S. A., TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics, 32 (2016), 221238.Google Scholar
Lee, M. S. Y., Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships. Biological Journal of the Linnean Society, 65 (1998), 369453.Google Scholar
Zaher, H., The phylogenetic position of Pachyrhachis within snakes (Squamata, Lepidosauria). Journal of Vertebrate Paleontology, 18 (1998), 13.Google Scholar
Zaher, H. and Rieppel, O., Tooth implantation and replacement in squamates, with special reference to mosasaur lizards and snakes. American Museum Novitates, 3271 (1999), 119.Google Scholar
Caldwell, M. W., Budney, L. A., and Lamoureux, D. O., Histology of tooth attachment tissues in the Late Cretaceous mosasaurid Platecarpus. Journal of Vertebrate Paleontology, 23 (2003), 622630.Google Scholar
Caldwell, M. W. and Palci, A., A new basal mosasauroid from the Cenomanian (U. Cretaceous) of Slovenia with a review of mosasauroid phylogeny and evolution. Journal of Vertebrate Paleontology, 27 (2007), 863883.Google Scholar
Rieppel, O. and Kearney, M., Tooth replacement in the Late Cretaceous mosasaur Clidastes . Journal of Herpetology, 39 (2005), 688692.Google Scholar
Luan, X., Walker, C., Dangaria, S., et al., The mosasaur tooth attachment apparatus as paradigm for the evolution of the gnathostome periodontium. Evolution & Development, 11 (2009), 247259.Google Scholar
Caldwell, M. W., Ontogeny, anatomy and attachment of the dentition in mosasaurs (Mosasauridae: Squamata). Zoological Journal of the Linnean Society, 149 (2007), 687700.Google Scholar
LeBlanc, A. R., Lamoureux, D. O., and Caldwell, M. W., Mosasaurs and snakes have a periodontal ligament: timing and extent of calcification, not tissue complexity, determines tooth attachment mode in reptiles. Journal of Anatomy, 231 (2017), 869885.Google Scholar
Gomez, C., Özbudak, E. M., Wunderlich, J., et al., Control of segment number in vertebrate embryos. Nature, 454 (2008), 335339.Google Scholar
Woltering, M. J., From lizard to snake; behind the evolution of an extreme body plan. Current Genomics, 13 (2012), 289299.Google Scholar
Montero, R., Daza, J. D., Bauer, A. M., and Abdala, V., How common are cranial sesamoids among squamates? Journal of Morphology, 278 (2017), 14001411.Google Scholar
Ollonen, J., Silva, F. O., Mahlow, K., and Di–Poi, N., Skull development, ossification pattern, and adult shape in the emerging lizard model organism Pogona vitticeps: a comparative analysis with other squamates. Frontiers in Physiology, 9 (2018), 278.Google Scholar
Garberoglio, F. F., Apesteguía, S., Simões, T. R., et al., New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan. Science Advances, 5 (2019), eaax5833.Google Scholar

References

Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502520.Google Scholar
Dercourt, J., Zonenshain, L. P., Ricou, L.- E., et al., Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophys, 123 (1986), 241315.Google Scholar
Berra, F. and Angiolini, L., The evolution of the Tethys region throughout the Phanerozoic: A brief tectonic reconstruction. American Association of Petroleum Geologists, Memoirs, 106 (2014), 127.Google Scholar
Polcyn, M. J., Tchernov, E., and Jacobs, L. L., The Cretaceous biogeography of the eastern Mediterranean with a description of a new basal mosasauroid from ‘Ein Yabrud, Israel. In Tomida, Y., Rich, T. H., and Vickers-Rich, P., eds., Proceedings of the Second Gondwanan Dinosaur Symposium, National Science Museum Tokyo , Monographs (1999), pp. 259290.Google Scholar
Caldwell, M. W. and Lee, M. S. Y., A snake with legs from the marine Cretaceous of the Middle East. Nature, 386 (1997), 705709.Google Scholar
Rage, J.-C. and Escuillié, F., Un nouveau serpent bipède du Cénomanien (Crétacé). Implications phylétiques. Comptes Rendus de l’Academie des Sciences, Paris, Sciences de la Terre et des Planètes, 330 (2000), 513520.Google Scholar
Tchernov, E., Rieppel, O., Zaher, H., Polcyn, M. J., and Jacobs, L. L., A fossil snake with limbs. Science, 287 (2000), 20102012.Google Scholar
Zaher, H., The phylogenetic position of Pachyrhachis within snakes (Squamata, Lepidosauria). Journal of Vertebrate Paleontology, 18 (1998), 13.Google Scholar
Zaher, H. and Rieppel, O., Tooth implantation and replacement in squamates, with special reference to mosasaur lizards and snakes. American Museum Novitates, 3271 (1999), 119.Google Scholar
Rage, J.-C. and Escuillié, F., The Cenomanian: stage of hindlimbed snakes. Carnets de Geologie, 2003/01 (2003), 111.Google Scholar
Scanlon, J. D. and Lee, M. S. Y., The Pleistocene serpent Wonambi and the early evolution of snakes. Nature, 403 (2000), 416420.Google Scholar
Scanlon, J. D., Skull of the large non-macrostomatan snake Yurlunggur from the Australian Oligo-Miocene. Nature, 439 (2006), 839842.Google Scholar
Vidal, N. and Hedges, S. B., Molecular evidence for a terrestrial origin of snakes. Proceedings of the Royal Society of London B, 271 (2004), S226S229.Google Scholar
Apesteguía, S. and Zaher, H., A Cretaceous terrestrial snake with robust hindlimbs and a sacrum. Nature, 440 (2006), 10371040.Google Scholar
Bardet, N., Houssaye, A., Rage, J.-C., and Pereda Suberbiola, X., The Cenomanian-Turonian (late Cretaceous) radiation of marine squamates (Reptilia): the role of the Mediterranean Tethys. Bulletin de la Société Géologique de France, 179 (2008), 605622.Google Scholar
Sauvage, H. E., Sur l’existence d’un reptile du type ophidien dans les couches à Ostrea columba des Charentes. Comptes Rendus de la Société de l’Academie des Sciences, Paris, 91 (1880), 671672.Google Scholar
Nopcsa, F., Eidolosaurus und Pachyophis, zwei neue Neocom-Reptilien. Palaeontograpjica, 65 (1923), 99154.Google Scholar
Nopcsa, F., Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens. II. Wirbeltier-Reste der Baharjie-Stufe (unterstes Cenoman). Abhandlungen der Bayerische Akademie der Wissenschaftern, Mathematische-naturwissenschaftliche Abteilung, 30 (1925), 527.Google Scholar
Bolkay, S. J., Mesophis nopcsai ngn sp. ein neues, schlangenähnliches reptil aus der unteren Kreide (Neocom) von Bilek-Selista (Ost-Hercegovina). Glasnik zemaljskog Muzeja u Bosni i Hercegovini, 37 (1925), 125135.Google Scholar
Owen, R., Palaeontology, or a systematic summary of extinct animals and their geological relations (Edinburgh: Adam and Charlos Black, 1860).Google Scholar
Rochebrune, A.-T. d., Revision des ophidiens fossiles du Muséum d’Histoire naturelle. Nouvelles Archives du Muséum d’Histoire Naturelle, 2éme Série, 3 (1880), 271296.Google Scholar
Cope, E. D., On the reptilian orders, Pythonomorpha and Streptosauria. Proceedings of the Boston Society of Natural History, 12 (1869), 250266.Google Scholar
Camp, C. L., Classification of the lizards. Bulletin of the American Museum of Natural History, 48 (1923), 289481.Google Scholar
Russell, D. A., Systematics and morphololgy of American mosasaurs (Reptilia, Sauria). Peabody Museum of Natural History Bulletin, 23 (1967), 1241.Google Scholar
Seeley, H. G., On remains of a small lizard from the Neocomian rocks of Comén, near Trieste, preserved in the Geological Museum of the University of Vienna. Quarterly Journal of the Geological Society of London, 37 (1881), 5256.Google Scholar
Kornhuber, A., Über einen neuen fossilen Saurier aus Lesina. Abhandlungen der kaiserlich-königlichen geologischen Reichsanstalt, 5 (1873), 7590.Google Scholar
Kornhuber, A., Carsosaurus Marchesettii, ein neuer fossiler Lacertilier aus den Kreideschichten des Karstes bei Komen. Abhandlungen der kaiserlich-königlichen geologischen Reichsanstalt, 17 (1893), 115.Google Scholar
Kornhuber, A., Opetiosaurus Bucchichi, eine neue fossile Eidechse aus der unteren Kreide von Lesina in Dalmatien. Abhandlungen der kaiserlich-königlichen geologischen Reichsanstalt, 17 (1901), 124.Google Scholar
Gorjanović-Kramberger, K., Aigialosaurus, eine neue Eidechse aus den Kreideschiefern der Insel Lesina, mit Rücksicht auf die bereits beschriebenen Lacertiden von Comen und Lesina. Glasnik hrvatskoga naravoslovnoga drustva u Zagrebu, 7 (1892), 74106.Google Scholar
Nopcsa, F., Über die varanusartigen lacerten Istriens. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, 15 (1903), 3142.Google Scholar
Boulenger, G. A., Notes on the Osteology of Heloderma horridum and H. suspectum, with Remarks on the Systematic Position of the Helodermatidæ and on the Vertebræ of the Lacertilia. Proceedings of the zoological Society of London, 59 (1891), 109118.Google Scholar
Dollo, L., Les ancêtres des mosasauriens. Bulletin Scientifique de la France et de la Belgique, 38 (1903), 137139.Google Scholar
McDowell, S. B. and Bogert, C. M., The systematic position of Lanthanotus and the affinities of the anguinomorphan lizards. Bulletin of the American Museum of Natural History, 105 (1954), 1142.Google Scholar
Lee, M. S. Y., The phylogeny of varanoid lizards and the affinities of snakes. Philosophical Transactions of the Royal Society of London B, 352 (1997), 5391.Google Scholar
Rieppel, O., Zaher, H., Tchernov, E., and Polcyn, M. J., The anatomy and relationships of Haasiophis terrasanctus, a fossil snake with well-developed hind limbs from the Mid-Cretaceous of the Middle East. Journal of Paleontology, 77 (2003), 536558.Google Scholar
Palci, A. and Caldwell, M. W., Redescription of Acteosaurus tommasinii von Meyer, 1860, and a discussion of evolutionary trends within the clade Ophidiomorpha. Journal of Vertebrate Paleontology, 30 (2010), 94108.Google Scholar
Garberoglio, F. F., Apesteguia, S., Simoes, T., et al., New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan. Science Advances, 5 (2019), eaax5833.Google Scholar
Garberoglio, F. F., Gómez, R. O., Simões, T. R., Caldwell, M. W., and Apesteguía, S., The evolution of the axial skeleton intercentrum system in snakes revealed by new data from the Cretaceous snakes Dinilysia and Najash . Scientific Reports, 9 (2019), 110.Google Scholar
Caldwell, M. W., The Origin of Snakes: Morphology and the Fossil Record (Boca Raton: CRC Press, 2020).Google Scholar
Conrad, J. L., Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310 (2008), 1182.Google Scholar
Evans, S. E., A new anguimorph lizard from the Jurassic and Lower Cretaceous of England. Palaeontology, 37 (1994), 3349.Google Scholar
Reeder, T. W., Townsend, T. M., Mulcahy, D. G., et al., Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS ONE, 10 (2015), e0118199.Google Scholar
Hsiang, A. Y., Field, D. J., Webster, T. H., et al., The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evolutionary Biology, 15 (2015), 87.Google Scholar
Caldwell, M. W., Snake phylogeny, origins, and evolution: the role, impact, and importance of fossils (1869–2006). In Anderson, J. S. and Sues, H.-D., ed., Evolutionary Transitions and Origins of Major Groups of Vertebrates (Bloomington, Indiana: Indiana University Press, 2007), pp. 253302.Google Scholar
Paparella, I., Palci, A., Nicosia, U., and Caldwell, M. W., A new fossil marine lizard with soft tissues from the Late Cretaceous of southern Italy. Royal Society Open Science, 5 (2018), 172411.Google Scholar
Rieppel, O. and Head, J. J., New specimens of the fossil snake genus Eupodophis Rage & Escuillié, from Cenomanian (Late Cretaceous) of Lebanon. Memorie Soc Italiana Sci Nat, 32 (2004), 126.Google Scholar
Rage, J.-C. and Néraudeau, D., A new pachyostotic squamate reptile from the Cenomanian of France. Palaeontology, 47 (2004), 11951210.Google Scholar
Houssaye, A., ‘Pachyostosis’ in aquatic amniotes: a review. Integrative Zoology, 4 (2009), 325340.Google Scholar
Polcyn, M. J., Jacobs, L. L., Araújo, R., Schulp, A. S., and Mateus, O., Physical drivers of mosasaur evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 400 (2014), 1727.Google Scholar
Gauthier, J., Kearney, M., Maisano, J. A., Rieppel, O., and Behlke, A. D. B., Assembling the squamate tree of life: Perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53 (2012), 3308.Google Scholar
Zaher, H. and Smith, K. T., Pythons in the Eocene of Europe reveal a much older divergence of the group in sympatry with boas. Biology Letters, 16 (2020), 20200735.Google Scholar
Albino, A., Carrillo-Briceño, J. D., and Neenan, J. M., An enigmatic aquatic snake from the Cenomanian of Northern South America. PeerJ, 4 (2016), e2027.Google Scholar
Rage, J. C., Vullo, R., and Néraudeau, D., The mid-Cretaceous snake Simoliophis rochebrunei Sauvage, 1880 (Squamata: Ophidia) from its type area (Charentes, southwestern France): Redescription, distribution, and palaeoecology. Cretaceous Research, 58 (2016), 234253.Google Scholar
Nessov, L. A., Zhegallo, V. I., and Averianov, A. O., A new locality of Late Cretaceous snakes, mammals and other vertebrates in Africa (western Libya). Annales de Paléontologie, 84 (1998), 265274.Google Scholar
Haas, G., On a new snakelike reptile from the lower Cenomanian of ‘Ein Yabrud, near Jerusalem. Bulletin du Museum National d’Histoire Naturelle, Paris, Série 4, 1 (1979), 5164.Google Scholar
Haas, G., Pachyrhachis problematicus Haas, snakelike Reptile from the lower Cenomanian: ventral view of the skull. Bulletin du Museum National d’Histoire Naturelle, Paris, Série 2 (1980), 87104.Google Scholar
Haas, G., Remarks on a new ophiomorph reptile from the Lower Cenomanian of Ein Jabrud, Israel. In Jacobs, L. L., ed., Aspects of Vertebrate History, in Honor of E H Colbert (Flagstaff, Arizona: Museum of Northern Arizona Press, 1980), pp. 177–92.Google Scholar
Lee, M. S. Y., Caldwell, M. W., and Scanlon, J. D., A second primitive marine snake: Pachyophis woodwardi from the Cretaceous of Bosnia-Herzegovina. Journal of Zoology, 248 (1999), 509520.Google Scholar
Houssaye, A., Rediscovery and description of the second specimen of the hind-limbed snake Pachyophis woodwardi Nopcsa, 1923 (Squamata, Ophidia) from the Cenomanian of Bosnia Herzegovina . Journal of Vertebrate Paleontology, 30 (2011), 276279.Google Scholar
Đurić, D., Radosavljević, D., Petrović, D., Radonjić , M., and Vojnović , P., A new evidence for pachyostotic snake from Turonian of Bosnia-Herzegovina. Geoloski anali Balkanskoga poluostrva, (2017), 1721.Google Scholar
Lee, M. S. Y. and Caldwell, M. W., Anatomy and relationships of Pachyrhachis problematicus, a primitive snake with hindlimbs. Philosophical Transactions of the Royal Society of London B, 353 (1998), 15211552.Google Scholar
Zaher, H. and Rieppel, O., The phylogenetic relationships of Pachyrhachis problematicus, and the evolution of limblessness in snakes (Lepidosauria, Squamata). Comptes Rendus de Séances de l’Académie des Sciences (Série IIA), Earth and Planetary Science, 329 (1999), 831837.Google Scholar
Zaher, H. and Rieppel, O., On the phylogenetic relationships of the Cretaceous snakes with legs, with special reference to Pachyrhachis problematicus (Squamata, Serpentes). Journal of Vertebrate Paleontology, 22 (2002), 104109.Google Scholar
Rieppel, O. and Zaher, H., The intramandibular joint in squamates, and the phylogenetic relationships of the fossil snake Pachyrhachis problematicus Haas. Fieldiana Geology, 43 (2000), 169.Google Scholar
Polcyn, M. J., Jacobs, L. L., and Haber, A., A morphological model and CT assessment of the skull of Pachyrhachis problematicus (Squamata, Serpentes), a 98 million year old snake with legs from the Middle East. Palaeontologica Electronica, 8 (2005), 124.Google Scholar
Palci, A., Caldwell, M. W., and Nydam, R. L., Reevaluation of the anatomy of the Cenomanian (Upper Cretaceous) hind-limbed marine fossil snakes Pachyrhachis, Haasiophis, and Eupodophis . Journal of Vertebrate Paleontology, 33 (2013), 13281342.Google Scholar
Cundall, D. and Irish, F. J., The snake skull. In Gans, C., Gaunt, A. S. and Adler, K., eds., Biology of the Reptilia, Vol. 20, Morphology H, The Skull of Lepidosauria (Ithaca, New York: Society for the Study of Amphibians and Reptiles, 2008), pp. 349692.Google Scholar
Zaher, H. and Scanferla, C. A., The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited. Zoological Journal of the Linnean Society, 164 (2012), 194238.Google Scholar
Zaher, H., Apesteguía, S., and Scanferla, C. A., The anatomy of the Upper Cretaceous snake Najash rionegrina Apesteguía & Zaher, 2006, and the evolution of limblessness in snakes. Zoological Journal of the Linnean Society, 156 (2009), 801826.Google Scholar
McDowell, S. B., The skull of Serpentes. In Gans, C., Gaunt, A. S., and Adler, K., eds., Biology of the Reptilia, Vol. 21, Morphology I, The Skull and Appendicular Locomotor Apparatus of Lepidosauria (Ithaca, New York: Society for the Study of Amphibians and Reptiles, 2008), pp. 467620.Google Scholar
Lessmann, M. H., Zur labialen Pleurodontie an Lacertilier-Gebissen. Anatomischer Anzeiger, 99 (1952), 3567.Google Scholar
Kochva, E., The origin of snakes and evolution of the venom apparatus. Toxicon, 25 (1987), 65106.Google Scholar
deBraga, M. and Carroll, R. L., The origin of mosasaurs as a model of macroevolutionary patterns and processes. Evolutionary Biology, 27 (1993), 245322.Google Scholar
Apesteguia, S. and Zaher, H., A Cretaceous terrestrial snake with robust hindlimbs and a sacrum. Nature, 440 (2006), 10371040.Google Scholar
Harrington, S. M. and Reeder, T. W., Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction. Biological Journal of the Linnean Society, 121 (2017), 379394.Google Scholar
Martill, D. M., Tischlinger, H., and Longrich, N. R., A four-legged snake from the Early Cretaceous of Gondwana. Nature, 349 (2015), 416419.Google Scholar
Kley, N. J., Prey transport mechanisms in blindsnakes and the evolution of unilateral feeding systems in snakes. American Zoologist, 41 (2001), 13211337.Google Scholar
Northcutt, R. G.. Forebrain and midbrain organization in lizards and its phylogenetic significance. In Greenberg, N. and Maclean, P. D., eds., Behavior and Neurology of Lizards (Rockville: National Institute of Mental Health, 1978), pp. 1164.Google Scholar
Longrich, N. R., Bhullar, B.-A. S., and Gauthier, J. A., A transitional snake from the Late Cretaceous Period of North America. Nature, 488 (2012), 205208.Google Scholar
Lee, M. S. Y., Bell, G. L., and Caldwell, M. W., The origin of snake feeding. Nature, 400 (1999), 655659.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×