Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T17:14:46.168Z Has data issue: false hasContentIssue false

Part I - The Squamate and Snake Fossil Record

Published online by Cambridge University Press:  30 July 2022

David J. Gower
Affiliation:
Natural History Museum, London
Hussam Zaher
Affiliation:
Universidade de São Paulo
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Vidal, N. and Hedges, S. B., The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. Comptes Rendus Biologies, 328 (2005), 10001008.Google Scholar
Camp, C. L., Classification of the lizards. Bulletin of the American Museum of Natural History, 48 (1923), 289481.Google Scholar
Estes, R., De Queiroz, K., and Gauthier, J., Phylogenetic relationships within Squamata. In Estes, R., and Pregill, G., eds., Essays Commemorating Charles L. Camp. Phylogenetic Relationships of the Lizard Families (Stanford, CA: Stanford University Press, 1988), pp. 119281.Google Scholar
Townsend, T. M., Larson, A., Louis, E., and Macey, J. R., Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Systematic Biology, 53 (2004), 735757.CrossRefGoogle ScholarPubMed
Vidal, N. and Hedges, S. B., Molecular evidence for a terrestrial origin of snakes. Proceedings of the Royal Society of London, series B: Biological Sciences, 271 (2004), suppl: S226S229.Google Scholar
Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O., and Behlke, A. D. B., Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53 (2012), 3308.CrossRefGoogle Scholar
Wiens, J. J., Hutter, C. R., Mulcahy, D. G., et al., Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biology Letters, 8 (2012), 10431046.Google Scholar
Pyron, R. A., Burbrink, F. T., and Wiens, J. J., A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13 (2013), 93.Google Scholar
Reeder, T. W., Townsend, T. M., Mulcahy, D. G., et al., Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS ONE, 10 (2015), e0118199.Google Scholar
Zheng, Y. and Wiens, J. J., Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular Phylogenetics and Evolution, 94 (2016), 537547.CrossRefGoogle Scholar
Streicher, J. W. and Wiens, J. J., Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families. Biology Letters, 13 (2017), 20170393.Google Scholar
Pyron, R. A., Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Systematic Biology, 66 (2017), 3856.Google Scholar
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502520.CrossRefGoogle ScholarPubMed
Jones, M. E. H., Anderson, C. L., Hipsley, C. A., et al., Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evolutionary Biology, 13 (2013), 208.Google Scholar
Evans, S. E., At the feet of the dinosaurs: the origin, evolution and early diversification of squamate reptiles (Lepidosauria: Diapsida). Biological Reviews, 78 (2003), 513551.Google Scholar
Evans, S. E. and Jones, M. E. H., The origins, early history and diversification of lepidosauromorph reptiles. In Bandyopadhyay, S., ed., New Aspects of Mesozoic Biodiversity, Lecture Notes in Earth Sciences 132 (Berlin, Germany: Springer-Verlag, 2010), pp. 2744.Google Scholar
Datta, P. M. and Ray, S., Earliest lizard from the Late Triassic (Carnian) of India. Journal of Vertebrate Paleontology, 26 (2006), 795800.Google Scholar
Hutchinson, M. N., Skinner, A., and Lee, M. S. Y., Tikiguana and the antiquity of squamate reptiles (lizards and snakes). Biology Letters, 8 (2012), 665669.Google Scholar
Simões, T. R., Caldwell, M. W., Tałanda, M., et al., The origin of squamates revealed by a Middle Triassic ‘lizard’ from the Italian Alps. Nature, 557 (2018), 706709.CrossRefGoogle ScholarPubMed
Evans, S. E. and Borsuk-Białynicka, M., A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontologica Polonica, 65 (2009), 179202.Google Scholar
Renesto, S. and Posenato, R., A new lepidosauromorph reptile from the Middle Triassic of the Dolomites (Northern Italy). Rivista Italiana di Paleontologia i Stratigrafia, 109 (2003), 463474.Google Scholar
Evans, S. E., A new lizard-like reptile (Diapsida: Lepidosauromorpha) from the Middle Jurassic of Oxfordshire. Zoological Journal of the Linnean Society, 103 (1991), 391412.Google Scholar
Griffiths, E. F., Ford, D. P., Benson, R. B. J., and Evans, S. E., New information on the Jurassic lepidosauromorph Marmoretta oxoniensis . Papers in Palaeontology, 7:4 (2021), 22552278 Google Scholar
Yadagiri, P., Lower Jurassic lower vertebrates from Kota Formation, Pranhita-Godavari valley, India. Journal of the Palaeontological Society of India, 31 (1986), 8996.Google Scholar
Evans, S. E., Prasad, G. V. R., and Manhas, B., Fossil lizards from the Jurassic Kota Formation of India. Journal of Vertebrate Paleontology, 22 (2002), 299312.Google Scholar
Conrad, J. L., A new lizard (Squamata) was the last meal of Compsognathus (Theropoda: Dinosauria) and is a holotype in a holotype. Zoological Journal of the Linnean Society, 183 (2018), 584634.Google Scholar
Evans, S. E., A new anguimorph lizard from the Jurassic and Lower Cretaceous of England. Palaeontology, 37 (1994), 3349.Google Scholar
Evans, S. E., Crown group lizards from the Middle Jurassic of Britain. Palaeontographica, Abt.A 250 (1998), 123154.Google Scholar
Pancirioli, E., Benson, R. B. J., Walsh, S., et al., Diverse vertebrate assemblage of the Kilmaluag Formation (Bathonian, Middle Jurassic) of Skye, Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 111 (2020), 135–56.Google Scholar
Caldwell, M. W., Nydam, R. L., Palci, A., and Apesteguia, S., The oldest known snakes from the Middle Jurassic–Lower Cretaceous provide insights on snake evolution. Nature Communications, 6 (2015), 5996.Google Scholar
Fedorov, P. V. and Nessov, L. A., A lizard from the boundary of the Middle and Late Jurassic of north-east Fergana, Bulletin of St . Petersburg University, Geology and Geography, 3 (1992), 914 [In Russian].Google Scholar
Averianov, A., Martin, T., Skutschas, P. P., et al., Middle Jurassic vertebrate assemblages of Berezovsk coal mine in western Siberia, (Russia). Global Geology, 19 (2016), 187204.Google Scholar
Haddoumi, H., Allain, R., Meslouh, S., et al., Guelb el Ahmar (Bathonian, Anoual Syncline, eastern Morocco): first continental flora and fauna including mammals from the Middle Jurassic of Africa. Gondwana Research, 29 (2016), 290319.Google Scholar
Conrad, J. L., Wang, Y., Xu, X., Pyron, R. A., and Clark, J., Skeleton of a heavily armoured and long-legged Middle Jurassic lizard (Squamata, Reptilia). Journal of Vertebrate Paleontology Supplement, Annual Meeting Abstracts, 73 (2013), 108.Google Scholar
Evans, S. E. and Wang, Y., A juvenile lizard from the Late Jurassic/Early Cretaceous of China. Naturwissenschaften, 94 (2007), 431439.Google Scholar
Evans, S. E. and Wang, Y., A long-limbed lizard from the Upper Jurassic/Lower Cretaceous of Daohugou, Inner Mongolia, China. Vertebrata Palasiatica, 47 (2009), 2134.Google Scholar
Dong, L. P., Wang, Y., Mou, L., Zhang, G., and Evans, S. E., A new Jurassic lizard from China. Geodiversitas, 41 (2019), 623641.Google Scholar
Seiffert, J., Upper Jurassic lizards from Central Portugal. Memoria, Serviços Geológicos de Portugal, 22 (1973), 185.Google Scholar
Hecht, M. K. and Hecht, B. M., A new lizard from Jurassic deposits of Middle Asia. Paleontological Journal, 18 (1984), 133136.Google Scholar
Prothero, D. R. and Estes, R., Late Jurassic lizards from Como Bluff Wyoming, and their palaeobiogeographic significance. Nature, 286 (1980), 484486.Google Scholar
Evans, S. E. and Chure, D. C., Paramacellodid lizard skulls from the Jurassic Morrison Formation at Dinosaur National Monument, Utah. Journal of Vertebrate Paleontology, 18 (1998), 99114.Google Scholar
Evans, S. E. and Chure, D. C., Morrison lizards: structure, relationships and biogeography. Modern Geology, 23 (1998), 3548.Google Scholar
Cocude-Michel, M., Les rhynchocéphales et les Sauriens des Calcaires Lithographiques (Jurassique supérieur) d’Europe Occidentale. Nouvelles Archives du Muséum d’Histoire naturelle de Lyon, 7 (1963), 1187.Google Scholar
Hoffstetter, R., Les Sauria du Jurassic supérieur et specialement les Gekkota de Bavière et de Mandchourie. Senckenbergiana Biologie, 45 (1964), 281322.Google Scholar
Mateer, N. J., Osteology of the Jurassic lizard Ardeosaurus brevipes (Meyer). Palaeontology, 25 (1982), 461–9.Google Scholar
Evans, S. E., The Solnhofen (Jurassic: Tithonian) lizard genus Bavarisaurus: new skull material and a reinterpretation. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 192 (1994), 3752.Google Scholar
Simões, T. R., Caldwell, M. W., Nydam, R. L., and Jiminez-Huidabro, P., Osteology, phylogeny, and functional morphology of two Jurassic lizard species and the early evolution of scansoriality in geckoes. Zoological Journal of the Linnean Society, 180 (2017), 216241.Google Scholar
Talanda, M., An exceptionally preserved Jurassic skink suggests lizard diversification preceded the fragmentation of Pangaea. Palaeontology, 61 (2018), 659677.CrossRefGoogle Scholar
Evans, S. E., A re-evaluation of the late Jurassic (Kimmeridgian) reptile Euposaurus (Reptilia: Lepidosauria) from Cerin, France. Geobios, 27 (1994), 621631.CrossRefGoogle Scholar
Zils, W., Werner, C., Moritz, A., and Saanane, C., Tendaguru, the most famous dinosaur locality of Africa. Review, survey and future prospects. Documenta naturae, Munich, 97 (1995), 141.Google Scholar
Li, P. P., Gao, K. Q., Hou, L. H., and Xu, X., A gliding lizard from the Early Cretaceous of China. Proceedings of the National Academy of Sciences of the U.S.A., 104 (2007), 55075509.CrossRefGoogle ScholarPubMed
Evans, S. E., Manabe, M., Noro, M., Isaji, S., and Yamaguchi, M., A long-bodied lizard from the Lower Cretaceous of Japan. Palaeontology, 49(6) (2006), 11431165.Google Scholar
Wang, Y. and Evans, S. E., A gravid lizard from the Early Cretaceous of China: insights into the history of squamate viviparity. Naturwissenschaften, 98 (2011), 739743.Google Scholar
Evans, S. E. and Manabe, M., A herbivorous lizard from the Early Cretaceous of Japan. Palaeontology, 51 (2008), 487498.Google Scholar
Evans, S. E. and Barbadillo, L. J., An unusual lizard (Reptilia, Squamata) from the Early Cretaceous of Las Hoyas, Spain. Zoological Journal of the Linnean Society, 124 (1998), 235266.Google Scholar
Arnold, E. N. and Poinar, G., A 100 million year old gecko with sophisticated adhesive toepads preserved in amber from Myanmar. Zootaxa, 1847 (2008), 6268.Google Scholar
Evans, S. E., Lacasa-Ruiz, A., and Erill Rey, J., A lizard from the Early Cretaceous (Berriasian-Hauterivian) of Montsec. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 215 (1999), 115.Google Scholar
Evans, S. E., Raia, P., and Barbera, C., New lizards and rhynchocephalians from the Early Cretaceous of southern Italy. Acta Palaeontologica Polonica, 49 (3) (2004), 393408.Google Scholar
Conrad, J. L., Phylogeny and systematic of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310 (2008), 1182.Google Scholar
Alifanov, V. R., The oldest gecko (Lacertilia: Gekkonidae) from the Lower Cretaceous of Mongolia. Paleontological Journal, 23 (1990), 128131.Google Scholar
Daza, J. D., Bauer, A. M., and Snively, E. D., On the fossil record of Gekkota. Anatomical Record, 297 (2014), 433462.Google Scholar
Conrad, J. L. and Norell, M. A., High-resolution X-ray computed tomography of an early Cretaceous gekkonomorph (Squamata) from Öösh (Övörkhangai: Mongolia). Historical Biology, 18 (2006), 405431.Google Scholar
Conrad, J. L. and Daza, J. D., Naming and re-diagnosing the Cretaceous gekkonomorph (Reptilia, Squamata) from Öösh (Övörkhangai, Mongolia). Journal of Vertebrate Paleontology, 35 (2015), e980891.CrossRefGoogle Scholar
Daza, J. D., Stanley, E. L., Wagner, P., Bauer, A., and Grimaldi, D. A., Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards. Science Advances, 2 (2016), e1501080.Google Scholar
Fontanarrosa, G., Daza, J. D., and Abdala, V., Cretaceous fossil gecko hand reveals a strikingly modern scansorial morphology: qualitative and biometric analysis of an amber-preserved lizard hand. Cretaceous Research, 84 (2018), 120133.Google Scholar
Greer, A. E., The relationships of the lizard genera Anelytropsis and Dibamus. Journal of Herpetology, 19 (1985), 116156.Google Scholar
Cernansky, A., The first potential fossil record of a dibamid reptile (Squamata; Dibamidae): a new taxon from the early Oligocene of Central Mongolia. Zoological Journal of the Linnean Society, 187 (2019), 782799.Google Scholar
Estes, R. and Sauria, Amphisbaenia. Handbuch der Paläoherpetologie/Encyclopedia of Paleontology, Part 10A (Stuttgart: Gustav Fischer, 1983).Google Scholar
Kosma, R., The dentitions of recent and fossil scincomorphan lizards (Lacertilia, Squamata). Systematics, functional morphology, palaeoecology. Unpublished PhD Thesis, University of Hannover (2004).Google Scholar
Broschinski, A. and Sigogneau‑Russell, D., Remarkable lizard remains from the lower Cretaceous of Anoual (Morocco). Annales de Paléontologie (Vert.‑Invert.), 82 (1996), 147175.Google Scholar
Broschinski, A., The lizards from the Guimarota mine. In Martin, T. and Krebs, B., eds., Guimarota. A Jurassic Ecosystem (Munich: Dr. Friedrich Pfeil, 2000), pp. 5968.Google Scholar
Hoffstetter, R., Coup d’oeil sur les Sauriens (Lacertiliens) des couches de Purbeck (Jurassique Supérieur d’Angleterre). Problemes Actuels de Paleontologie (Evolution des Vertebrates), Colloques Internationaux du Centre National de la Recherche Scientifique, 163 (1967), 349371.Google Scholar
Li, J.-L., A new lizard from the late Jurassic of Subei, Gansu. Vertebrata PalAsiatica, 23 (1985), 1318.Google Scholar
Averianov, A. O. and Skutchas, P. P., Paramacellodid lizard (Squamata, Scincomorpha) from the Early Cretaceous of Transbaikalia. Russian Journal of Herpetology, 6 (1999), 115117.Google Scholar
Richter, A., Lacertilia aus der Unteren Kreide von Uña und Galve (Spanien) und Anoual (Marokko). Berliner geowissenschaftliche Abhandlungen, 14 (1994), 1147.Google Scholar
Nydam, R. L. and Cifelli, R. L., Lizards from the Lower Cretaceous (Aptian-Albian) Antlers and Cloverley Formations. Journal of Vertebrate Paleontology, 22 (2002), 286298.Google Scholar
Bittencourt, J. S., Simões, T. R., Caldwell, M. W., and Langer, M. C., Discovery of the oldest South American fossil lizard illustrates the cosmopolitanism of early South American squamates. Communications Biology, 3 (2020), 201.Google Scholar
Reynoso, V. H. and Callison, G., A new scincomorph lizard from the Early Cretaceous of Puebla, Mexico. Zoological Journal of the Linnean Society, 130 (2000), 183212.Google Scholar
Simões, T. R., Wilner, E., Caldwell, M. W., Weinschutz, L. C., and Kellner, A. W. A., A stem-acrodontan lizard in the Cretaceous of Brazil revises early lizard evolution in Gondwana. Nature Communications, 6 (2015), 9149.Google Scholar
Evans, S. E., Jones, M. E. H., and Matsumoto, R., A new lizard skull from the Purbeck Limestone Group of England. Bulletin of the Geological Society of France, 183 (2012), 517524.Google Scholar
Evans, S. E. and Barbadillo, L. J., Early Cretaceous lizards from las Hoyas, Spain. Zoological Journal of the Linnean Society, 119 (1997), 2349.CrossRefGoogle Scholar
Richter, A., Der problematische Lacertilier Ilerdaesaurus (Reptilia: Squamata) aus der Unter-Kreide von Uña und Galve. Berliner geowissenschaftliche Abhandlungen, 13 (1994), 135161.Google Scholar
Bonfim-Junior, F. C. and Marques, R. B., Um novo lagarto do Cretáceo do Brasil (Lepidosauria, Squamata, Lacertilia – formação Santana, Aptiano da Bacia do Araripe). Anuario do Instituto de Geociencias, 20 (1997), 233240.Google Scholar
Bonfim-Junior, F. C. and Avila, L. D. S., Phylogenetic position of Tijubina pontei Bonfim and Marques 1997 (Lepidosauria, Squamata), a basal lizard from the Santana Formation, Lower Cretaceous of Brazil. Journal of Vertebrate Paleontology, 22 (Supplement to 3) (2002), 37A38A.Google Scholar
Simões, T. R., Redescription of Tijubina pontei, and Early Cretaceous lizard (Reptilia; Squamata) from the Crato Formation of Brazil. Anais da Academia Brasileira de Ciencias, 84 (2012), 1.Google Scholar
Evans, S. E. and Yabumoto, Y., A lizard from the Early Cretaceous Crato Formation, Araripe Basin, Brazil. Neues Jahrbuch für Paläontologie und Geologie, Monatshefte 1998 (1998), 349364.CrossRefGoogle Scholar
Alifanov, V. R., New lizards of the Macrocephalosauridae (Sauria) from the Upper Cretaceous of Mongolia, critical remarks on the systematics of the Teiidae (sensu Estes, 1983). Paleontological Journal, 27 (1993), 7090.Google Scholar
Nydam, R. L., Eaton, J. G., and Sankey, J., New taxa of transversely-toothed lizards (Squamata; Scincomorpha) and new information on the evolutionary history of ‘teiids’. Journal of Paleontology, 81 (2007), 538549.Google Scholar
Evans, S. E. and Matsumoto, R., An assemblage of lizards from the Early Cretaceous of Japan. Palaeontologica Electronica, 18.2.36A (2015), 136.Google Scholar
Sullivan, R. M., A new middle Paleocene (Torrejonian) rhineurid amphisbaenian, Plesiorhineura tsentasi new genus, new species, from the San Juan Basin, New Mexico. Journal of Paleontology, 59 (1985), 14811485.Google Scholar
Nessov, L. A., Rare bony fishes, terrestrial lizards and mammals from the lagoonal zone of the litoral lowlands of the Cretaceous of the Kyzylkumy. Yearbook of the All-Union Palaeontological Society, Leningrad, 28 (1985), 199219.Google Scholar
Alifanov, V. R., Lizards of the family Hodzhakuliidae (Scincomorpha) from the Lower Cretaceous of Mongolia. Paleontological Journal, 50 (2016), 504513.Google Scholar
Wu, X.-C., Brinkman, D. B., and Russell, A. P., Sineoamphisbaena hexatabularis: an amphisbaenian (Diapsida: Squamata) from the Upper Cretaceous redbeds at Bayan Mandahu (Inner Mongolia, People’s Republic of China), and comments on the phylogenetic relationships of the Amphisbaenia. Canadian Journal of Earth Sciences, 33 (1996), 541577.Google Scholar
Talanda, M., Cretaceous roots of the amphisbaenian lizards. Zoologica Scripta, 45 (2015), 18.Google Scholar
Alifanov, V. R., Lizards of the families Eoxantidae, Ardeosauridae, Globauridae, and Paramacellodidae (Scincomorpha) from the Aptian-Albian of Mongolia. Paleontological Journal, 53 (2019), 7488.Google Scholar
Alifanov, V. R., Lizards of the families Dorsetisauridae and Xenosauridae (Anguimorpha) from the Aptian–Albian of Mongolia. Paleontological Journal, 53 (2019), 183193.Google Scholar
O’Connor, J. M., Zheng, X., Dong, L., et al., Microraptor with ingested lizard suggests non-specialized digestive function. Current Biology, 29 (2019), 24232429.Google Scholar
Gao, K. Q. and Nessov, L. A., Early Cretaceous squamates from the Kyzylkum Desert, Uzbekistan. Neues Jahrbüch für Geologie und Paläontologie, Abhandlungen, 207 (1998), 289309.Google Scholar
Fernandez, V., Buffetaut, E., Suteethorn, V., et al., Evidence of egg diversity in squamate evolution from Cretaceous anguimorph embryos. PLoS ONE, 10 (2015), e0128610.Google Scholar
Evans, S. E. and Wang, Y., The Early Cretaceous lizard Dalinghosaurus from China. Acta Palaeontologica Polonica, 50 (2005), 725–742.Google Scholar
Cifelli, R. L. and Nydam, R. L., Primitive, helodermatid-like platynotan from the Early Cretaceous of Utah. Herpetologica, 51 (1995), 286291.Google Scholar
Nydam, R. L., A new taxon of helodermatid-like lizard from the Albian-Cenomanian of Utah. Journal of Vertebrate Paleontology, 20 (2000), 285294.Google Scholar
Sweetman, S. C. and Evans, S. E., Lepidosaurs (lizards). In Batten, D. J., ed., Palaeontological Association Field Guide to Fossils, 14 . English Wealden Fossils (London: The Palaeontological Association, 2011), pp. 264284.Google Scholar
Houssaye, A., Rage, J.-C., Fernandez-Baldor, F. T., et al., A new varanoid squamate from the Early Cretaceous (Barremian-Aptian) of Burgos, Spain. Cretaceous Research, 41 (2013), 127135.Google Scholar
Daza, J. D., Bauer, A. M., Stanley, E. L., et al., An enigmatic miniaturized and attenuate whole lizard from the mid-Cretaceous amber of Myanmar. Breviora, 563 (2018), 118.Google Scholar
Evans, S. E. and Barbadillo, L. J., A short-limbed lizard from the Lower Cretaceous of Spain. Special Papers in Palaeontology, 60 (1999), 7385.Google Scholar
Reynoso, V. H., Huehuecuetzpalli mixtecus gen. et sp. nov.: a basal squamate (Reptilia) from the early Cretaceous of Tepexi de Rodriguez, Central Mexico. Philosophical Transactions of the Royal Society of London , Biological Sciences, 353 (1998), 477500.Google Scholar
Matsumoto, R. and Evans, S. E., The first record of albanerpetontid amphibians (Amphibia, Albanerpetontidae) from East Asia. PLoS ONE, 13 (2018), e0189767.Google Scholar
Apesteguia, S., Daza, J. D., Simões, T. R., and Rage, J.-C., The first iguanian lizard from the Mesozoic of Africa. Royal Society Open Science, 3 (2016), 160462.Google Scholar
McDowell, S. B. and Bogert, C. M., The systematic position of Lanthanotus and the affinities of the anguinomorphan lizards. Bulletin of the American Museum of Natural History, 105 (1954), 1142.Google Scholar
Carroll, R. L. and De Braga, M., Aigialosaurus: mid-Cretaceous varanoid lizards. Journal of Vertebrate Paleontology, 12 (1992), 6686.Google Scholar
Caldwell, M. W., Carroll, R. L., and Kaiser, H., The pectoral girdle and forelimb of Carsosaurus marchesetti (Aigialosauridae) with a preliminary phylogenetic analysis of mosasauroids and varanoids. Journal of Vertebrate Paleontology, 15 (1995), 516531.Google Scholar
Caldwell, M. W., Squamate phylogeny and the relationships of snakes and mosasauroids. Zoological Journal of the Linnean Society, 125 (1999), 115147.Google Scholar
Simões, T. R., Vernygora, O., Paparella, I., Jimenez-Huidobro, P., and Caldwell, M. W., Mosasauroid phylogeny under multiple phylogenetic methods provides new insights on the evolution of aquatic adaptations in the group. PLoS ONE 12 (2017), e0176773.Google Scholar
Lee, M. S. Y., The phylogeny of varanoid lizards and the affinities of snakes. Philosophical Transactions of the Royal Society, Biological Sciences, 352 (1997), 5391.Google Scholar
Lee, M. S. Y., Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate phylogeny. Biological Journal of the Linnean Society, 65 (1998), 369453.CrossRefGoogle Scholar
Lee, M. S. Y. and Caldwell, M. W., Adriosaurus and the affinities of mosasaurs, dolichosaurs, and snakes. Journal of Paleontology, 74 (2000), 915–37.Google Scholar
Cope, E. D., On the reptilian orders, Pythonomorpha and Streptosauria. Proceedings of the Boston Society of Natural History, 12 (1869), 250–66.Google Scholar
Lee, M. S. Y., Molecular evidence and marine snake origins. Biology Letters, 1 (2005), 227230.Google Scholar
Caldwell, M. W., On the aquatic squamate Dolichosaurus longicollis Owen, 1850 (Cenomanian, Upper Cretaceous), and the evolution of elongate necks in squamates. Journal of Vertebrate Paleontology, 20 (2000), 720735.Google Scholar
Dutchak, A. R., A review of the taxonomy and systematics of aigialosaurs. Netherlands Journal of Geosciences, 84 (2005), 221229.Google Scholar
Mekarski, M. C., Pierce, S. E., and Caldwell, M. W., Spatiotemporal distributions of non-ophidian ophidiomorphs, with implications for their origin, radiation, and extinction. Frontiers in Earth Science, 7 (2019), article 24.Google Scholar
Paparella, M., Palci, A., Nicosia, U., and Caldwell, M. W., A new fossil marine lizard with soft tissues from the Late Cretaceous of southern Italy. Royal Society Open Science, 5 (2018), e172411.Google Scholar
Pierce, S. E. and Caldwell, M. W., Redescription and phylogenetic position of the Adriatic (Upper Cretaceous; Cenomanian) dolichosaur Pontosaurus lesinensis (Kornhuber, 1873). Journal of Vertebrate Paleontology, 24 (2004), 373386.Google Scholar
Palci, A. and Caldwell, M. W., Redescription of Acteosaurus tommasinii Von Meyer 1860, and a discussion of evolutionary trends within the clade Ophiodiomorpha. Journal of Vertebrate Paleontology, 30 (2010), 94108.Google Scholar
Rage, J.-C. and Richter, A., A snake from the lower Cretaceous (Barremian) of Spain: the oldest known snake. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1995 (1995), 561565.Google Scholar
Scanlon, J. D. and Hocknull, S. A., A dolichosaurid lizard from the latest Albian (mid-Cretaceous) Winto Formation, Queensland, Australia. In Everhard, M. J., ed., Proceedings of the Second Mosasaur Meeting, Fort Hays Studies Special Issue, 3 (2008), 131136.Google Scholar
Martill, D. M., Tischlinger, H., and Longrich, N. R., A four-legged snake form the Early Cretaceous of Gondwana. Science, 349 (2015), 416419.Google Scholar
Lee, M. S. Y., Squamate phylogeny, taxon sampling, and data congruence. Organisms, Diversity, and Evolution, 5 (2005), 2545.Google Scholar
Simões, T. R., Caldwell, M. W., and Kellner, A. W. A., A new Early Cretaceous lizard species from Brazil, and the phylogenetic position of the oldest known South American squamates. Journal of Systematic Palaeontology, 13 (2015), 601614.CrossRefGoogle Scholar
Mulcahy, D. G., Noonan, B. P., Moss, T., et al., Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles. Molecular Phylogenetics and Evolution, 65 (2012), 974991.CrossRefGoogle ScholarPubMed
Lee, M. S. Y., Hidden support from unpromising data sets strongly unites snakes with anguimorph ‘lizards’. Journal of Evolutionary Biology, 22 (2009), 13081316.Google Scholar
Hoffstetter, R., Un serpent terrestre dans le Crétacé inférieur du Sahara. Bulletin de la Société Géologique de France, 1 (1959), 897902.Google Scholar
Cuny, G., Jaeger, J. J., Mahboubi, M., and Rage, J.-C., Les plus anciens serpentes (Reptilia, Squamata) connus. Mise au point sur l’age géologiques des Serpents de la partie moyenne du Crétacé. Comptes rendus des séances de l’Académie des Sciences Paris , Series 2, 311 (1990), 12671272.Google Scholar
Rage, J.-C. and Escuillié, F., The Cenomanian: stage of hind-limbed snakes. Notebooks on Geology, (1) (2003), (CG2003 A01 JCR-FE).Google Scholar
Gardner, J. D. and Cifelli, R. L., A primitive snake from the Cretaceous of Utah. Special Papers in Palaeontology, 60 (1999), 87100.Google Scholar
Rage, J.-C. and Dutheil, D. B., Amphibians and squamates from the Cretaceous (Cenomanian) of Morocco. A preliminary study. Palaeontographica Abteilung A, 286 (2008), 122.Google Scholar
Lee, M. S. Y., Caldwell, M. W., and Scanlon, J. D., A second primitive marine snake: Pachyophis woodwoodi from the Cretaceous of Bosnia-Herzgovina. Journal of Zoology, 248 (1999), 509520.Google Scholar
Haas, G., On a new snake-like reptile from the lower Cenomanian of Ein Jabrud, near Jerusalem. Bulletin du Muséum National d’Histoire Naturelle de Paris, 1 (1979), 5164.Google Scholar
Caldwell, M. W. and Lee, M. S. Y., A snake with legs from the marine Cretaceous of the Middle East. Nature, 386 (1997), 705709.Google Scholar
Zaher, H., The phylogenetic position of Pachyrachis within snakes (Squamata, Lepidosauria). Journal of Vertebrate Paleontology, 18 (1998), 13.Google Scholar
Zaher, H. and Rieppel, O., The phylogenetic relationships of Pachyrachis problematicus and the evolution of limblessness in snakes (Lepidosauria, Squamata). Comptes Rendus de l’Academie de Sciences, Series IIA – Earth and Planetary Science, 329 (1999), 831837.Google Scholar
Rage, J.-C. and Escuillié, F., Un nouveau serpent bipède du Cénomanien (Crétacé). Implications phylétiques. Comptes Rendus de l’Academie des Sciences, Series IIA - Earth and Planetary Science, 330 (2000), 513520.Google Scholar
Tchernov, E., Rieppel, O., Zaher, H., Polcyn, M. J., and Jacobs, L. L., A fossil snake with limbs. Science, 287 (2000), 20102012.Google Scholar
Albino, A., Carillo-Briceno, J. D., and Neenan, J. M., An enigmatic aquatic snake from the Cenomanian of northern South America. PeerJ, 4 (2016), DOI 10.7717/peerj.2027 e2027.Google Scholar
Rage, J.-C., Un serpent primitif (Reptilia, Squamata) dans le Cénomanien (base du Crétacé supérieur). Comptes rendus de l’Academie des Sciences, Paris, 307 (1988), 10271032.Google Scholar
Xing, L., Caldwell, M. W., Chen, R., et al., A mid-Cretaceous embryonic-to-neonate snake in amber from Myanmar. Science Advances, 4 (2018), eaat5042.Google Scholar
Apesteguía, S. and Zaher, H., A Cretaceous terrestrial limbed snake with robust hindlimbs and sacrum, Nature, 440 (2006), 10371040.Google Scholar
Garberoglio, F. F., Apesteguia, S., Simões, T. R., et al., New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan. Science Advances, 5 (2019), eaax5833.Google Scholar
Hsiou, A. S., Albino, A. M., Medeiros, M. A., and Santos, R. A. B., The oldest Brazilian snakes from the Cenomanian (early Late Cretaceous). Acta Palaeontologica Polonica, 59 (2013), 635642.Google Scholar
Klein, C. G., Longrich, N. R., Ibrahim, N., Zouhri, S., and Martill, D. M., A new basal snake from the mid-Cretaceous of Morocco. Cretaceous Research, 72 (2017), 134141.CrossRefGoogle Scholar
Harrington, S. M. and Reeder, T. W., Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction. Biological Journal of the Linnean Society, 121(2017), 379394.Google Scholar
Da Silva, F. O., Fabre, A.-C., Savriama, Y., et al., The ecological origins of snakes as revealed by skull evolution. Nature Communications, 9 (2018), 376.Google Scholar

References

Head, J. J., de Queiroz, K., and Greene, H. W., Pan-Serpentes. In de Queiroz, K., Cantino, P. D., and Gauthier, J. A., eds., Phylonyms: A Companion to the PhyloCode (Berkeley: CRC Press, 2020), pp. 11301134.Google Scholar
Walls, G. L., Ophthalmological implications for the early history of the snakes. Copeia, 1940 (1940), 18.CrossRefGoogle Scholar
D’a. Bellairs, A. and Underwood, G., The origin of snakes. Biological Reviews, 26 (1951), 193237.Google Scholar
Rieppel, O., A review of the origin of snakes. Evolutionary Biology, 22 (1988), 37130.Google Scholar
Nopcsa, F., Eidolosaurus und Pachyophis . Zwei neue Neocom-Reptilien. Palaeontographica , 65 (1923), 99154.Google Scholar
Caldwell, M. W. and Lee, M. S. Y., A snake with legs from the marine Cretaceous of the Middle East. Nature, 386 (1997), 705709.Google Scholar
Tchernov, E., Rieppel, O., Zaher, H., Polcyn, M. J., and Jacobs, L. L., A fossil snake with limbs. Science, 287 (2000), 20102012.Google Scholar
Apesteguía, S. and Zaher, H., A Cretaceous terrestrial snake with robust hindlimbs and a sacrum. Nature, 440 (2006), 10371040.Google Scholar
Caprette, C. L., Lee, M. S., Shine, R., Mokany, A., and Downhower, J. F., The origin of snakes (Serpentes) as seen through eye anatomy. Biological Journal of the Linnean Society, 81 (2004), 469482.Google Scholar
Scanlon, J. D., Skull of the large non-macrostomatan snake Yurlunggur from the Australian Oligo-Miocene. Nature, 439 (2006), 839842.CrossRefGoogle ScholarPubMed
Garberoglio, F. F., Apesteguía, S., Simões, T. R., et al., New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan. Science Advances, 5 (2019), p.eaax5833.Google Scholar
Camp, C. L., Classification of the lizards. Bulletin of the American Museum of Natural History, 48 (1923), 289481.Google Scholar
Lee, M. S. Y., The phylogeny of varanoid lizards and the affinities of snakes. Philosophical Transactions of the Royal Society of London, B, 352 (1997), 5391.Google Scholar
Lee, M. S. Y., Convergent evolution and character correlation in burrowing reptiles: Towards a resolution of squamate relationships. Biological Journal of the Linnean Society, 65 (1998), 369453.CrossRefGoogle Scholar
Rage, J. -C., La phylogénie des Lépidosauriens (Reptilia): une approche cladistique. Comptes Rendus, Académie des Sciences, Paris, 294 (1982), 563566.Google Scholar
Hallermann, J., The ethmoidal region of Dibamus taylori (Squamata: Dibamidae), with a phylogenetic hypothesis on dibamid relationships within Squamata. Zoological Journal of the Linnean Society, 122 (1998), 385426.Google Scholar
Evans, S. E. and Barbadillo, L. J., An unusual lizard from the Early Cretaceous of Las Hoyas, Spain. Zoological Journal of the Linnean Society, 124 (1998), 235265.Google Scholar
Conrad, J. L., Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310 (2008), 1182.Google Scholar
Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O., and Behlke, A. D. B., Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53 (2012), 3308.CrossRefGoogle Scholar
Wiens, J. J., Kuczynski, C. A., Townsend, T., et al., Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossils. Systematic Biology, 59 (2010), 674688.Google Scholar
Wiens, J. J., Hutter, C. R., Mulcahy, D. G., et al., Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biology Letters, 8 (2012), 10431046.Google Scholar
Pyron, R. A., Burbrink, F. T., and Wiens, J. J., A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13 (2013), 93.Google Scholar
Streicher, J. W. and Wiens, J. J., Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families. Biology Letters, 13 (2017), 20170393.Google Scholar
Simões, T. R., Caldwell, M. W., Tałanda, M., et al., The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature, 557 (2018), 706709.CrossRefGoogle ScholarPubMed
Rage, J.-C. and Escuillié, F., Un nouveau serpent bipède du Cénomanien (Crétacé). Implications phylétiques. Comptes Rendus de l’Académie des Sciences - Série IIA - Earth and Planetary Science, 330 (2000), 513520.Google Scholar
Wilson, J. A., Mohabey, D., Peters, S., and Head, J. J., Predation upon hatchling sauropod dinosaurs by a new basal snake from the Late Cretaceous of India. PLOS Biology. 8 (2010), 15 doi: 10.1371/journal.pbio.1000322.g005.Google Scholar
Zaher, H. and Scanferla, C. A., The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited. Zoological Journal of the Linnean Society, 164 (2012), 194238.Google Scholar
Caldwell, M. W., The Origin of Snakes. Morphology and the Fossil Record (Boca Raton, FL: CRC Press, 2020).Google Scholar
Rage, J. -C., Encyclopedia of Paleoherpetology, part 11, Serpentes (Stuttgart: Gustav Fischer Verlag, 1984).Google Scholar
Holman, J. A., Fossil Snakes of North America. Origin, Evolution, Distribution, Paleoecology (Indianapolis: Indiana University Press, 2000).Google Scholar
Gans, C., Locomotion of limbless vertebrates: Pattern and evolution. Herpetologica, 42 (1986), 3346.Google Scholar
Campano, J. G., Reaction forces and rib function during locomotion in snakes. Integrative and Comparative Biology, 60 (2020), 215231.Google Scholar
Hoffstetter, R. and Gasc, J. -P., Vertebrae and ribs of modern reptiles. In Gans, C. and Parsons, T. S., eds., Biology of the Reptilia, Vol. 1, Morphology (London: Academic Press, 1969), pp. 201310.Google Scholar
Moon, B. R., Testing and inference of function from structure: Snake vertebrae do the twist. Journal of Morphology, 241 (1999), 217225.Google Scholar
Cieri, R. L., The axial anatomy of monitor lizards (Varanidae). Journal of Anatomy, 233 (2018), 636643.CrossRefGoogle ScholarPubMed
Mosauer, W., The myology of the trunk region of snakes and its significance for ophidian taxonomy and phylogeny. Publications of the University of California at Los Angeles in Biological Sciences, 1 (1935), 81120.Google Scholar
Auffenberg, W., The vertebral musculature of Chersydrus (Serpentes). Quarterly Journal of the Florida Academy of Sciences, 29 (1966), 155162.Google Scholar
Gasc, J. -P., L’interprétation fonctionnelle de l’appareil musculo-squelettique de l’axe vertébral chez les Serpents (Reptilia). Mémoires du Museum National d’Histoire Naturelle Série A, 83 (1974), 1182.Google Scholar
Gasc, J. -P., Axial musculature. In Gans, C. and Parsons, T. S., eds., Biology of the Reptilia, Vol. 11, Morphology F (London: Academic Press, 1981), pp. 355435.Google Scholar
Penning, D. A., Quantitative axial myology in two constricting snakes: Lampropeltis holbrooki and Pantherophis obsoletus . Journal of Anatomy, 232 (2018), 10161024.Google Scholar
Ritter, D., Axial muscle function during lizard locomotion. Journal of Experimental Biology, 199 (1996), 24992510.Google Scholar
Chapman, S. W. and Conklin, R. E., The lymphatic system of the snake. Journal of Morphology, 58 (1935), 385417.Google Scholar
Ottaviani, G. and Tazzi, A., The lymphatic system. In Gans, C. and Parsons, T. S., eds., Biology of the Reptilia, Vol. 6, Morphology H (London: Academic Press, 1977), pp. 315462.Google Scholar
Laduke, T. C., The fossil snakes of Pit 91, Racho La Brea, California. Contributions in Science, Natural History Museum of Los Angeles County, 424 (1991), 128.Google Scholar
Head, J. J., Mahlow, K., and Müller, J., Fossil calibration dates for molecular phylogenetic analysis of snakes 2: Caenophidia, Colubroidea, Elapoidea, Colubridae. Palaeontologia Electronica, 19.2.2FC (2016), 121.Google Scholar
Zaher, H., Grazziotin, F. G., Cadle, J. E., et al., Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American xenodontines: a revised classification and descriptions of new taxa. Papéis Avulsos de Zoologia, 49 (2009), 115153.Google Scholar
Slowinski, J. B., A phylogenetic analysis of Bungarus (Elapidae) based on morphological characters. Journal of Herpetology, 28 (1994), 440446.Google Scholar
Head, J. J., Snakes of the Siwalik Group (Miocene of Pakistan): systematics and relationship to environmental change. Palaeontologia Electronica, 8 (2005), 16A.Google Scholar
Head, J. J., Fossil calibration dates for molecular phylogenetic analysis of snakes 1: Serpentes, Alethinophidia, Boidae, Pythonidae. Palaeontologia Electronica, 18 (2015), 117.Google Scholar
Evans, S. E., Parviraptor (Squamata: Anguimorpha) and other lizards from the Morrison Formation at Fruita, Colorado. Museum of Northern Arizona Bulletin, 60 (1996), 243248.Google Scholar
Rage, J. -C. and Richter, A., A snake from the Lower Cretaceous (Barremian) of Spain: The oldest known snake. Neues Jarbuch für Geologie und Paläontologie, Monatshefte, Stuttgart, II.9 (1994), 561565.Google Scholar
Rage, J. -C. and Escuillié, F., The Cenomanian: stage of hindlimbed snakes. Carnets de Géologie, Maintenon, Article 2003/01 (2003), 111.Google Scholar
Evans, S. E., A new anguimorph lizard from the Jurassic and lower Cretaceous of England. Palaeontology, 37 (1994), 3349.Google Scholar
Caldwell, M. W., Nydam, R. L., Palci, A., and Apesteguía, S., The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution. Nature Communications, 6 (2015), 111.Google Scholar
Ross, C. F., Sues, H.-D., and De Klerk, W. J., Lepidosaurian remains from the lower Cretaceous Kirkwood Formation of South Africa. Journal of Vertebrate Paleontology, 19 (1999), 2127.Google Scholar
Rieppel, O. and Zaher, H., The braincases of mosasaurs and Varanus, and the relationships of snakes. Zoological Journal of the Linnean Society, 129 (2000), 489514.Google Scholar
Evans, S. E., The skull of lizards and tuatara. In Gans, C., Gaunt, A. S. and Adler, K., eds., Biology of the Reptilia, Vol. 20, Morphology H (Ithaca, NY: Society for the Study of Amphibians and Reptiles, 2008), pp. 1347.Google Scholar
Estes, R., Frazzetta, T. H., and Williams, E. E., Studies on the fossil snake Dinilysia patagonica Woodward: Part I. Cranial morphology. Bulletin of the Museum of Comparative Zoology, 140 (1970), 2574.Google Scholar
Haas, G., Pachyrhachis problematicus Haas, snakelike reptile from the Lower Cenomanian: ventral view of the skull. Bulletin du Muséum national d’Histoire naturelle, Serie 4, 2 (1980), 87104.Google Scholar
Rieppel, O. and Head, J. J., New specimens of the fossil snake genus Eupodophis Rage and Escuillié, from the mid-Cretaceous of Lebanon. Memorie della Società Italiana di Scienze Naturali e Museo Civico di Storia Naturale di Milano, 23 (2004), 126.Google Scholar
Cundall, D. and Irish, F., The snake skull. In Gans, C., Gaunt, A. S., and Adler, K., eds., Biology of the Reptilia, Vol. 20, Morphology H (Ithaca, NY: Society for the Study of Amphibians and Reptiles, 2008), pp. 349692.Google Scholar
Scanlon, J. D., Cranial morphology of the Plio−Pleistocene giant madtsoiid snake Wonambi naracoortensis . Acta Palaeontologica Polonica, 50 (2005), 139180.Google Scholar
Martill, D. M., Tischlinger, H., and Longrich, N. R., A four-legged snake from the Early Cretaceous of Gondwana. Science, 349 (2015), 416419.Google Scholar
Cuny, G., Jaeger, J. -J., Mahboubi, M., and Rage, J. -C., Les plus anciens Serpents (Reptilia, Squamata) connus. Mise au point sur l’âge géologique des Serpents de la partie moyenne du Crétacé. Comptes Rendus des Séances de l’Académie des Sciences, t.311 (1990), 12671272.Google Scholar
Gardner, J. D. and Cifelli, R. L., A primitive snake from the Cretaceous of Utah. In Unwin, D.M., ed., Cretaceous Fossil Vertebrates (London: The Paleontological Association, 1999), pp. 87100.Google Scholar
Cifelli, R. L., Kirkland, J. I., Weil, A., Deino, A. L., and Kowallis, B. J., High-precision 40Ar/39Ar geochronology and the advent of North America’s Late Cretaceous terrestrial fauna. Proceedings of the National Academy of Sciences, USA, 94 (1997), 1116311167.CrossRefGoogle ScholarPubMed
Xing, L., Caldwell, M. W., Chen, R., et al., A mid-Cretaceous embryonic-to-neonate snake in amber from Myanmar. Science Advances, 4 (2018), eaat5042.Google Scholar
Hsiou, A., Albino, A. M., Medeiros, M. A., and Santos, R. A. B., The oldest Brazilian snakes from the Cenomanian (early Late Cretaceous). Acta Palaeontologica Polonica, 59 (2014), 635642.Google Scholar
Albino, A. M., Carrillo-Briceño, J. D., and Neenan, J. M., An enigmatic aquatic snake from the Cenomanian of Northern South America. PeerJ, 4 (2016), e2027.Google Scholar
Rage, J. -C., Un serpent primitif (Reptilia, Squamata) dans le Cénomanien (base du Crétacé supérieur). Comptes Rendus de l’Académie des Sciences de Paris, Série II, 307 (1988), 10271032.Google Scholar
Sauvage, H. E., Sur l’existence d’un Reptile du type Ophidien dans les couches a Ostrea columba des Charentes. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 7 (1880), 12325.Google Scholar
Vullo, R., Rage, J. -C., and Neraudeau, D., Anuran and squamate remains from the Cenomanian (Late Cretaceous) of Charentes, western France. Journal of Vertebrate Paleontology, 31 (2011), 279291.Google Scholar
Rage, J. -C., Vullo, R., and Néraudeau, D., The mid-Cretaceous snake Simoliophis rochebrunei Sauvage, 1880 (Squamata: Ophidia) from its type area (Charentes, southwestern France): Redescription, distribution, and palaeoecology. Cretaceous Research, 58 (2016), 234253.Google Scholar
Hoffstetter, R., Un serpent terrestre dans le Crétacé inférieur du Sahara. Bulletin de La Société Géologique de France, 7 (1960), 158.Google Scholar
Klein, C. G., Longrich, N. R., Ibrahim, N., Zouhri, S., and Martill, D. M., A new basal snake from the mid-Cretaceous of Morocco. Cretaceous Research, 72 (2017), 134141.Google Scholar
Vullo, R., A new species of Lapparentophis from the mid-Cretaceous Kem Kem beds, Morocco, with remarks on the distribution of lapparentophiid snakes. Comptes Rendus Palevol, 18 (2019), 765770.Google Scholar
Rage, J. -C. and Dutheil, D. B., Amphibians and squamates from the Cretaceous (Cenomanian) of Morocco - A preliminary study, with description of a new genus of pipid frog. Palaeontographica Abteilung A, 285 (2008), 122.Google Scholar
Nopcsa, F., Ergbenisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens, II. Wirbeltier-Reste de rBaharîje-Stufe (unterstes Cenoman). 5. Die Symoliophis-Reste. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Abteilung, 30 (1925), 127.Google Scholar
Nessov, L. A., Zhegallo, V. I., and Averianov, A. O., A new locality of Late Cretaceous snakes, mammals and other vertebrates in Africa (western Libya). Annales de Paléontologie, 84 (1998), 265274.Google Scholar
Haas, G., On a new snakelike reptile from the Lower Cenomanian of Ein Jabrud, near Jerusalem. Bulletin Du Muséum National d’Histoire Naturelle, 1 (1979), 5164.Google Scholar
Houssaye, A., Rediscovery and description of the second specimen of the hind-limbed snake Pachyophis woodwardi Nopcsa, 1923 (Squamata, Ophidia) from the Cenomanian of Bosnia Herzegovina. Journal of Vertebrate Paleontology, 30 (2010), 276279.CrossRefGoogle Scholar
Bolkay, J., Mesophis nopcsai n.g. n.sp. ein neues, schlangenähnliches Reptil aus de runteren Kreide (Neocom) von Bilek-Selista (Ost-Hercegovina). Glasnik zemaljskog Muzeja u Bosni i Hercegovini, 37 (1925), 125135.Google Scholar
Nydam, R. L., Lizards and Snakes from the Cenomanian through Campanian of Southern Utah: filling the Gap in the fossil record of Squamata from the Late Cretaceous of the Western Interior of North America. In Titus, A. L. and Loewen, M. A., eds., At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah (Bloomington & Indianapolis: Indiana University Press, 2013), pp. 370423.Google Scholar
Ðurić, D., Radosavljević, D., Petrović, D., Radonjić, M., and Vojnović, P., A new evidence for pachyostotic snake from Turonian of Bosnia-Herzegovina. Annales Géologiques de La Péninsule Balkanique, 78 (2017), 1721.Google Scholar
de Broin, F., Buffetaut, E., Koeniguer, J. -C., et al., La fauna de Vertébrés continentaux du gisement d’In Beceten (Sénonien du Niger). Comptes Rendus Hebdomadaires Des Seances des Séances de l’Académie des Sciences de Paris, Série D, 279 (1974), 469472.Google Scholar
Rage, J. -C., Les continents péri-atlantiques au Crétacé Supérieur: Migrations des faunes continentales et problèmes paléogéographiques. Cretaceous Research, 2 (1981), 6584.CrossRefGoogle Scholar
Laduke, T. C., Krause, D. W., Scanlon, J. D., and Kley, N. J., A Late Cretaceous (Maastrichtian) snake assemblage from the Maevarano Formation, Mahajanga Basin, Madagascar. Journal of Vertebrate Paleontology, 30 (2010), 109138.Google Scholar
Moody, R. T. J. and Sutcliffe, P. J. C., The Cretaceous deposits of the Iullemmeden Basin of Niger, central West Africa. Cretaceous Research, 12 (1991), 137157.Google Scholar
Meunier, L. M. V. and Larsson, H. C. E., Trematochampsa taqueti as a nomen dubium and the crocodyliform diversity of the Upper Cretaceous in Beceten Formation of Niger. Zoological Journal of the Linnean Society, 182 (2018), 659680.Google Scholar
Smith-Woodward, A., On some extinct reptiles from Patagonia, of the Genera Miolania, Dinilysia, and Genyodectes . Proceedings of the Zoological Society of London, 1 (1901), 169184.Google Scholar
Caldwell, M. W. and Albino, A. M., Exceptionally Preserved Skeletons of the Cretaceous Snake Dinilysia patagonica Woodward, 1901. Journal of Vertebrate Paleontology, 22 (2003), 861866.Google Scholar
Caldwell, M. W. and Calvo, J., Details of a new skull and articulated cervical column of Dinilysia patagonica Woodward, 1901. Journal of Vertebrate Paleontology, 28 (2008), 349362.Google Scholar
Scanferla, C. A. and Canale, J. I., The youngest record of the Cretaceous snake genus Dinilysia (Squamata, Serpentes). South American Journal of Herpetology, 2 (2007), 7681.Google Scholar
Marsh, O. C., Notice of New Reptiles from the Laramie Formation. American Journal of Science, 43 (1892), 449453.Google Scholar
Longrich, N. R., Bhullar, B. A. S., and Gauthier, J. A., A transitional snake from the Late Cretaceous period of North America. Nature, 488 (2012), 205208.Google Scholar
Rage, J. -C. and Werner, C., Mid-Cretaceous (Cenomanian) snakes from Wadi Abu Hashim, Sudan: The earliest snake assemblage. Palaeontologia Africana, 35 (1999), 85–110.S.Google Scholar
Wick, L. and Shiller, T. A., New taxa among a remarkably diverse assemblage of fossil squamates from the Aguja Formation (lower Campanian) of West Texas. Cretaceous Research, 114 (2020), 104516.Google Scholar
Head, J. J., A South American snake lineage from the Eocene Greenhouse of North America and a reappraisal of the fossil record of ‘anilioid’ snakes. Geobios, (2020), doi.org/10.1016/j.geobios.2020.09.005.Google Scholar
Rage, J. -C. and Wouters, G., Découverte du plus ancien palaeopheidé (Reptilia, Serpentes) dans le Maestrichtien du Maroc. Geobios, 12 (1979), 293–6.Google Scholar
Pritchard, A. C., McCartney, J. A., Krause, D. W., and Kley, N. J., New snakes from the Upper Cretaceous (Maastrichtian) Maevarano Formation, Mahajanga Basin, Madagascar. Journal of Vertebrate Paleontology, 34 (2014), 10801093.CrossRefGoogle Scholar
Miralles, A., Marin, J., Markus, D., et al.. Molecular evidence for the paraphyly of Scolecophidia and its evolutionary implications. Journal of Evolutionary Biology, 31 (2018), 17821793.Google Scholar
Schiebout, J. A., Rigsby, C. A., Rapp, S. D., Hartnell, J. A., and Standhardt, B. R., Stratigraphy of the Cretaceous-Tertiary and Paleocene-Eocene transition rocks of Big Bend National Park, Texas. The Journal of Geology, 95 (1987), 359375.Google Scholar
Augé, M. and Rage, J.-C., Herpetofaunas from the upper Paleocene and lower Eocene of Morocco. Annales de Paléontologie, 92 (2006), 235253.Google Scholar
Fachini, T. S., Onary, S., Palci, A., et al., Cretaceous blind snake from Brazil fills major gap in snake evolution. iScience, (2020), 101834.Google Scholar
Gómez, R. O., Baez, A. M., and Rougier, G. W., An anilioid snake from the Upper Cretaceous of northern Patagonia. Cretaceous Research, 29 (2008), 481488.Google Scholar
Georgalis, G. L. and Smith, K. T., Constrictores Oppel, 1811 – the available name for the taxonomic group uniting boas and pythons. Vertebrate Zoology, 70 (2020), 291304.Google Scholar
Head, J. J., Bloch, J. I., Hastings, A. K., et al., Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature, 457 (2009), 715717.Google Scholar
Roberts, E .M., Deino, A. L., and Chan, M. A., [40]Ar/[39]Ar age of the Kaiparowits Formation, southern Utah, and correlation of contemporaneous Campanian strata and vertebrate faunas along the margin of the Western Interior Basin. Cretaceous Research, 26 (2005), 307318.Google Scholar
Longrich, N. R., Bhullar, B. A. S., and Gauthier, J. A., Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary. Proceedings of the National Academy of Sciences, 109 (2012), 2139621401.Google Scholar
Isaza, R., Garner, M., and Jacobson, E., Proliferative osteoarthritis and osteoarthrosis in 15 snakes. Journal of Zoo and Wildlife Medicine, 31 (2000), 2027.Google Scholar
Schrank, E., Palynology of the elastic Cretaceous sediments between Dongola and Wadi Muqaddam, northern Sudan. Berliner geowissenschaftliche Abhandlungen, (A), 120 (1990), 149168.Google Scholar
Schrank, E., Nonmarine Cretaceous correlations in Egypt and northern Sudan: palynological and palaeobotanical evidence. Cretaceous Research, 13 (1992), 351368.Google Scholar
Werner, C., Die kontinentale Wirbeltierfauna aus der unteren Oberkreide des Sudan (Wadi Milk Formation). Berliner Geowissenschaftliche Abhandlungen, (E), 13 (1994), 221249.Google Scholar
Vullo, R. and Néraudeau, D., When the ‘primitive’ shark Tribodus (Hybodontiformes) meets the ‘modern’ ray Pseudohypolophus (Rajiformes): the unique co-occurrence of these two durophagous Cretaceous selachians in Charentes (SW France). Acta Geologica Polonica, 58 (2008), 249255.Google Scholar
Owusu Agyemang, P. C., Roberts, E. M., Bussert, R., Evans, D., and Müller, J., U–Pb detrital zircon constraints on the depositional age and provenance of the dinosaur-bearing Upper Cretaceous Wadi Milk Formation of Sudan. Cretaceous Research, 97 (2019), 5272.Google Scholar
Eisawi, A. A. M., Palynological evidence of a Campanian–Maastrichtian age of the Shendi Formation (Shendi Basin, central Sudan). American Journal of Earth Sciences, 2 (2015), 206210.Google Scholar
Salih, K. A. O., Evans, D. C., Bussert, R., Klein, N., Nafi, M., and Müller, J., First record of Hyposaurus (Dyrosauridae, Crocodyliformes) from the Upper Cretaceous Shendi Formation of Sudan. Journal of Vertebrate Paleontology, 36 (2016), p.e1115408.Google Scholar
Klein, N., Bussert, R., Evans, D., et al., Turtle remains from the Wadi milk formation (upper cretaceous) of northern Sudan. Palaeobiodiversity and Palaeoenvironments, 96 (2016), 281303.Google Scholar
Rauhut, O. W. M., A dinosaur fauna from the Late Cretaceous (Cenomanian) of northern Sudan. Palaeontologia Africana, 35 (1999), 6184.Google Scholar
Claeson, K. M., Sallam, H. M., O’Connor, P. M., and Sertich, J. J., A revision of the Upper Cretaceous lepidosirenid lungfishes from the Quseir Formation, Western Desert, central Egypt. Journal of Vertebrate Paleontology, 34 (2014), 760766.Google Scholar
Martin, M., Protopterus nigeriensis nov. sp., l’un des plus anciens protoptères—Dipnoi (In Beceten, Sénonien du Niger). Comptes Rendus de l’Académie des Sciences, Series IIA, Earth and Planetary Science, 325 (1997), 635638.Google Scholar
Otero, O., Current knowledge and new assumptions on the evolutionary history of the African lungfish, Protopterus, based on a review of its fossil record. Fish and Fisheries, 12 (2011), 235255.Google Scholar
Rage, J. -C. and Cappetta, H., Vertebrates from the Cenomanian, and the geological age of the Draa Ubari fauna (Libya). Annales de Paléontologie, 88 (2002), 7984.Google Scholar
Ibrahim, N., Sereno, P. C., Varricchio, D. J., et al., Geology and paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco. ZooKeys, 928 (2020), 1216.Google Scholar
Mohabey, D. M., Head, J. J., and Wilson, J. A., A new species of the snake Madtsoia from the Upper Cretaceous of India and its paleobiogeographic implications. Journal of Vertebrate Paleontology, 31 (2011), 588595.Google Scholar
Gómez, R. O., Garberoglio, F. F., and Rougier, G. W., A new Late Cretaceous snake from Patagonia: Phylogeny and trends in body size evolution of madtsoiid snakes. Comptes Rendus Palevol, 18 (2019), 771781.Google Scholar
Yi, H. and Norell, M. A., The burrowing origin of modern snakes. Science Advances, 1 (2015), p.e1500743.Google Scholar
Rage, J. -C., Un caenophidien primitif (Reptilia, Serpentes) dans l’Éocène inférieur. Compte Rendu Sommaire des Séances de la Société Géologique de France, XVII o2 (1975), 4648.Google Scholar
Rage, J. -C., Folie, A., Rana, R. S., et al., A diverse snake fauna from the early Eocene of Vastan Lignite Mine, Gujarat, India. Acta Palaeontologica Polonica, 53 (2008), 391403.Google Scholar
Rage, J. -C. and Augé, M., Squamate reptiles from the middle Eocene of Lissieu (France). A landmark in the middle Eocene of Europe. Geobios , 43 (2010), 253268.Google Scholar
Head, J. J., Holroyd, P. A., Hutchison, J. H.,and Ciochon, R. L., First report of snakes (Serpentes) from the late middle Eocene Pondaung Formation, Myanmar. Journal of Vertebrate Paleontology, 25 (2005), 246250.Google Scholar
Zaher, H., Murphy, R. W., et al., Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). PloS One, 14 (2019), p.e0216148.Google Scholar
Zaher, H. and Rieppel, O., On the phylogenetic relationships of the Cretaceous snakes with legs, with special reference to Pachyrhachis problematicus (Squamata, Serpentes). Journal of Vertebrate Paleontology, 22 (2002), 104109.Google Scholar
Zaher, H. and Smith, K. T., Pythons in the Eocene of Europe reveal a much older divergence of the group in sympatry with boas. Biology Letters, 16 (2020), p.20200735.Google Scholar
Vasile, Ş., Csiki-Sava, Z., and Venczel, M., A new madtsoiid snake from the Upper Cretaceous of the Haţeg Basin, western Romania. Journal of Vertebrate Paleontology, 33 (2013), 11001119.Google Scholar
Zaher, H. and Rieppel, O., Tooth implantation and replacement in squamates, with special reference to mosasaur lizards and snakes. American Museum Novitates, 3271 (1999), 119.Google Scholar
Houssaye, A., ‘Pachyostosis’ in aquatic amniotes: a review. Integrative Zoology, 4 (2009), 325340 Google Scholar
Lee, M. S. Y. and Scanlon, J. D., Snake phylogeny based on osteology, soft anatomy and ecology. Biological Reviews, 77 (2002), 333401.Google Scholar
Harrington, S. M. and Reeder, T. W., Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: New insights into convergent evolution of feeding morphology and limb reduction. Biological Journal of the Linnean Society, 121 (2017), 379394.Google Scholar
Rieppel, O., Kluge, A. G., and Zaher, H., Testing the phylogenetic relationships of the Pleistocene snake Wonambi naracoortensis Smith. Journal of Vertebrate Paleontology, 22 (2002), 812829.Google Scholar
Rio, J. P. and Mannion, P. D., The osteology of the giant snake Gigantophis garstini from the upper Eocene of North Africa and its bearing on the phylogenetic relationships and biogeography of Madtsoiidae. Journal of Vertebrate Paleontology, 37 (2017), p.e1347179.Google Scholar
Scanlon, J. D., Nanowana gen. nov., small madtsoiid snakes from the Miocene of Riversleigh: Sympatric species with divergently specialised dentition. Memoirs of the Queensland Museum, 41 (1997), 393412.Google Scholar
Scanlon, J. D. and Lee, M. S. Y., The Pleistocene serpent Wonambi and the early evolution of snakes. Nature, 403 (2000), 416420.Google Scholar
Snetkov, P. B., Vertebrae of the sea snake Palaeophis nessovi Averianov (Acrochordoidea, Palaeophiidae) from the Eocene of Western Kazakhstan and phylogenetic analysis of the superfamily Acrochordoidea. Paleontological Journal, 45 (2011), 305313.Google Scholar
Houssaye, A., Rage, J. -C., Bardet, N., et al., New highlights about the enigmatic marine snake Palaeophis maghrebianus (Palaeophiidae; Palaeophiinae) from the Ypresian (Lower Eocene) phosphates of Morocco. Palaeontology, 56 (2013), 647661.Google Scholar
Bajpai, S. and Head, J. J., An early Eocene palaeopheid snake from Vastan Lignite Mine, Gujarat, India. Gondwana. Geological Magazine, 22 (2008), 8590.Google Scholar
Palci, A., Hutchinson, M. N., Caldwell, M. W., and Lee, M. S., The morphology of the inner ear of squamate reptiles and its bearing on the origin of snakes. Royal Society Open Science, 4 (2017), 170685.Google Scholar
Barrett, P. M., McGowan, A. J., and Page, V., Dinosaur diversity and the rock record. Proceedings of the Royal Society, B, 276 (2009), 26672674.Google Scholar
Hsiang, A. Y., Field, D. J., Webster, T. H., et al., The origin of snakes: Revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evolutionary Biology, 15 (2015), 87.Google Scholar
Estes, R., Middle Paleocene lower vertebrates from the Tongue River Formation, southeastern Montana. Journal of Paleontology, 50 (1976), 500520.Google Scholar
Hoffstetter, R., Nouvelles récoltes de serpents fossiles dans l’Éocène Supérieur du désert Libyque. Bulletin du Muséum national d’Histoire naturelle, 33 (1961), 326331.Google Scholar
Rage, J. -C., Fossil snakes from the Palaeocene of São José de Itaboraí, Brazil. Part I. Madtsoiidae, Aniliidae. Palaeovertebrata, 27 (1998), 109144.Google Scholar
Rage, J. -C., Métais, G., Bartolini, A., et al., First report of the giant snake Gigantophis (Madtsoiidae) from the Paleocene of Pakistan: paleobiogeographic implications. Geobios, 47 (2014), 147153.Google Scholar
Rage, J. -C., Bajpai, S. M. T., Thewissen, J. G., and Tiwari, B. N., Early Eocene snakes from Kutch, Western India, with a review of the Palaeophiidae. Geodiversitas, 25 (2003), 695716.Google Scholar
Reynolds, R. G., Niemiller, M. L., and Revell, L. J., Toward a Tree-of-Life for the boas and pythons: Multilocus species-level phylogeny with unprecedented taxon sampling. Molecular Phylogenetics and Evolution, 71 (2014), 201213.Google Scholar
Clemens, W. A., Evolution of the mammalian fauna across the Cretaceous–Tertiary boundary in northeastern Montana and other areas of the western interior. Geological Society of America, Special Paper, 361 (2002), 217245.Google Scholar
Friedman, M., Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proceedings of the Royal Society, B, 277 (2010), 16751683.Google Scholar
Feng, Y. J., Blackburn, D. C., Liang, D., et al., Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary. Proceedings of the National Academy of Sciences, USA, 114 (2017), E5864E5870.Google Scholar
Alfaro, M. E., Faircloth, B. C., Harrington, R. C., et al., Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary. Nature Ecology and Evolution, 2 (2018), 688696.Google Scholar
Field, D. J., Bercovici, A., Berv, J. S., et al., Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction. Current Biology, 28 (2018), 18251831.Google Scholar
Rage, J. -C., Fossil snakes from the Palaeocene of São José de Itaboraí, Brazil. Part III. Ungaliophiinae, Booids incertae sedis, and Caenophidia. Summary, update, and discussion of the snake fauna from the locality. Palaeovertebrata, 36 (2008), 3773.Google Scholar
Scanferla, A. and Smith, K. T., Exquisitely preserved fossil snakes of Messel: Insight into the evolution, biogeography, habitat preferences and sensory ecology of early boas. Diversity, 12 (2020), 100.Google Scholar
Pyron, R. A. and Burbrink, F. T., Extinction, ecological opportunity, and the origins of global snake diversity. Evolution, 66 (2012), 163178.Google Scholar
McCartney, J. A., Bouchard, S. N., Reinhardt, J. A., et al., The oldest lamprophiid (Serpentes, Caenophidia) fossil from the late Oligocene Rukwa Rift Basin, Tanzania and the origins of African snake diversity. Geobios, (2020), doi.org/10.1016/j.geobios.2020.07.005.Google Scholar
Simpson, G. G., A new fossil snake from the Notostylops beds of Patagonia. Bulletin of the American Museum of Natural History, 67 (1933), 122.Google Scholar
Da Silva, F. O., Fabre, A. C., Savriama, Y., et al., The ecological origins of snakes as revealed by skull evolution. Nature Communications, 9 (2018), https://doi.org/10.1038/s41467–017-02788-3.Google Scholar
Watanabe, A., Fabre, A. C., Felice, R. N., et al., Ecomorphological diversification in squamates from conserved pattern of cranial integration. Proceedings of the National Academy of Sciences, USA, 116 (2019), 1468814697.Google Scholar

References

Rage, J.-C. and Wouters, G., Découverte du plus ancien Palaeopheidé (Reptilia, Serpentes) dans le Maestrichtien du Maroc. Geobios, 12 (1979), 293296.Google Scholar
Rage, J.-C. and Werner, C., Mid-Cretaceous (Cenomanian) snakes from Wadi abu Hashim, Sudan: The earliest snake assemblage. Palaeontologia Africana, 35 (1999), 85110.Google Scholar
Head, J. J., Mahlow, K., and Müller, J., Fossil calibration dates for molecular phylogenetic analysis of snakes 2: Caenophidia, Colubroidea, Elapoidea, Colubridae. Palaeontologia Electronica, 19.2.2FC (2016), 121.Google Scholar
Longrich, N. R., Bhullar, B. -A. S., and Gauthier, J. A., Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary. Proceedings of the National Academy of Sciences, USA, 109 (2012), 2139621401.Google Scholar
Hsiang, A. Y., Field, D. J., Webster, T. H., et al., The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evolutionary Biology, 15 (2015), 87.Google Scholar
Harrington, S. M. and Reeder, T. W., Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction. Biological Journal of the Linnean Society, 121 (2017), 379394.Google Scholar
Zaher, H., Murphy, R. W., et al.Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes)PloS ONE, 14 (2019), e0216148.Google Scholar
Rage, J.-C., Serpentes (Handbuch der Paläoherpetologie, v. 11) (Stuttgart: Gustav Fischer Verlag, 1984).Google Scholar
Holman, J. A., Fossil Snakes of North America: Origin, Evolution, Distribution, Paleoecology (Bloomington, Indiana: Indiana University Press, 2000).Google Scholar
Cuvier, G., Recherches sur les Ossemens Fossiles, oú l’on Rétablit les Caractères de Plusierus Animaux dont les Révolutions du Globe Ont Détruit les Espèces. Vol. 4 (Paris: E. d’Ocagne: 1823).Google Scholar
McDowell, S. B., A catalogue of the snakes of New Guinea and the Solomons, with special reference to those in the Bernice P. Bishop Museum. Part III. Boinae and Acrochordoidea (Reptilia, Serpentes). Journal of Herpetology, 13 (1979), 192.Google Scholar
Kluge, A. G., Calabaria and the phylogeny of erycine snakes. Zoological Journal of the Linnean Society, 107 (1993), 293351.Google Scholar
Head, J. J., Phylogenetic significance of vertebral morphology in snakes: Implications for interpreting the fossil record. Journal of Vertebrate Paleontology, 22 (2002), 63A.Google Scholar
Bell, C. J., Head, J. J., and Mead, J. I., Synopsis of the herpetofauna from Porcupine Cave. In Barnosky, A. D., ed., Biodiversity Response to Climate Change in the Middle Pleistocene: The Porcupine Cave Fauna from Colorado (Berkeley, California: University of California Press, 2004), pp. 117126.Google Scholar
Smith, K. T., New constraints on the evolution of the snake clades Ungaliophiinae, Loxocemidae and Colubridae (Serpentes), with comments on the fossil history of erycine boids in North America. Zoologischer Anzeiger, 252 (2013), 157182.Google Scholar
Rage, J. -C., Les serpents des phosphorites du Quercy. Palaeovertebrata, 6 (1974), 274303.Google Scholar
Szyndlar, Z., Fossil snakes from Poland. Acta Zoologica Cracoviensia, 28 (1984), 1156.Google Scholar
Rage, J.-C., Bajpai, S., Thewissen, J. G. M., and Tiwari, B. N., Early Eocene snakes from Kutch, western India, with a review of the Palaeophiidae. Geodiversitas, 25 (2003), 695716.Google Scholar
Scanlon, J. D., Australia’s oldest known snakes: Patagoniophis, Alamitophis, and cf. Madtsoia (Squamata: Madtsoiidae) from the Eocene of Queensland. Memoirs of the Queensland Museum, 51 (2005), 215235.Google Scholar
Hoffstetter, R. and Rage, J. -C., Les Erycinæ fossiles de France (Serpentes, Boidæ): compréhension et histoire de la sous-famille. Annales de Paléontologie (Vertébrés), 58 (1972), 82124.Google Scholar
Szyndlar, Z. and Böhme, W., Redescription of Tropidonotus atavus von Meyer, 1855 from the upper Oligocene of Rott (Germany) and its allocation to Rottophis gen. nov (Serpentes, Boidae). Palaeontographica A, 240 (1996), 145161.Google Scholar
Auffenberg, W., The fossil snakes of Florida. Tulane Studies in Zoology, 10 (1963), 127213.Google Scholar
Head, J. J., Bloch, J. I., Hastings, A. K., et al., Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature, 457 (2009), 715717.Google Scholar
Georgalis, G. L., Rabi, M., and Smith, K. T., Taxonomic revision of the snakes of the genera Palaeopython and Paleryx (Serpentes, Constrictores) from the Paleogene of Europe. Swiss Journal of Palaeontology, 140 (2021), 18.Google Scholar
Albino, A. M., Snakes from the Paleocene and Eocene of Patagonia (Argentina): paleoecology and coevolution with mammals. Historical Biology, 7 (1993), 5169.Google Scholar
Rage, J.-C., Folie, A., Rana, R. S., et al., A diverse snake fauna from the early Eocene of Vastan Lignite Mine, Gujarat, India. Acta Palaeontologica Polonica, 53 (2008), 391403.Google Scholar
Rage, J.-C., Pickford, M., and Senut, B., Amphibians and squamates from the middle Eocene of Namibia, with comments on pre-Miocene anurans from Africa. Annales de Paléontologie, 99 (2013), 217242.Google Scholar
Scanferla, A., Zaher, H., Novas, F. E., de Muizon, C., and Céspedes, R., A new snake skull from the Paleocene of Bolivia sheds light on the evolution of macrostomatans. PLoS ONE, 8 (2013), e57583.Google Scholar
McCartney, J. A., Stevens, N. J., and O’Connor, P. M., The earliest colubroid-dominated snake fauna from Africa: perspectives from the late Oligocene Nsungwe Formation of southwestern Tanzania. PLoS ONE, 9 (2014), e90415.Google Scholar
McCartney, J. A. and Seiffert, E. R., A late Eocene snake fauna from the Fayum Depression, Egypt. Journal of Vertebrate Paleontology, 36 (2016), e1029580.Google Scholar
Hoffstetter, R., Squamates de type moderne. In Piveteau, J., ed., Traité de Paléontologie, Vol 5 (Paris: Masson, 1955), pp. 605662.Google Scholar
Vidal, N., Rage, J.-C., Couloux, A., and Hedges, S. B., Snakes (Serpentes). In Hedges, S. B. and Kumar, K., eds., The Timetree of Life (Oxford: Oxford University Press, 2009), pp. 390397.Google Scholar
Burbrink, F. T. and Crother, B. I., Evolution and taxonomy of snakes. In Aldridge, R. D. and Sever, D. M., eds., Reproductive Biology and Phylogeny of Snakes (Boca Raton, Florida: CRC Press, 2011), pp. 1953.Google Scholar
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502520.Google Scholar
Lee, M. S. Y. and Scanlon, J. D., Snake phylogeny based on osteology, soft anatomy and ecology. Biological Reviews, 77 (2002), 333401.Google Scholar
Scanlon, J. D., Skull of the large non-macrostomatan snake Yurlunggur from the Australian Oligo-Miocene. Nature, 439 (2006), 839842.Google Scholar
Conrad, J. L., Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310 (2008), 1182.Google Scholar
Caldwell, M. W., Nydam, R. L., Palci, A., and Apesteguía, S., The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution. Nature Communications, 6 (2015), 5996.Google Scholar
Wilson, J. A., Mohabey, D. M., Peters, S. E., and Head, J. J., Predation upon hatchling dinosaurs by a new snake from the Late Cretaceous of India. PLoS Biology, 8 (2010), e100322.Google Scholar
Zaher, H. and Scanferla, C. A., The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited. Zoological Journal of the Linnean Society, 164 (2012), 194238.Google Scholar
Scanferla, A. and Smith, K. T., Exquisitely preserved fossil snakes of Messel: insight into the evolution, biogeography, habitat preferences and sensory ecology of early boas. Diversity, 12 (2020), 100.Google Scholar
Georgalis, G. L., Del Favero, L., and Delfino, M., Italy’s largest snake - redescription of Palaeophis oweni from the Eocene of Monte Duello, near Verona. Acta Palaeontologica Polonica, 65 (2020), 523533.Google Scholar
Nessov, L. A., Paleogene sea snakes as indicators of water mass peculiarities on the east of Tethys Ocean [in Russian]. Vestnik St. Petersberg University, Series 7, 2 (1995), 39.Google Scholar
Zvonok, E. A. and Snetkov, P. B., New findings of snakes of the genus Palaeophis Owen, 1841 (Acrochordoidea: Palaeophiidae) from the middle Eocene of Crimea. Proceedings of the Zoological Institute of the Russian Academy of Sciences, 316 (2012), 392400.Google Scholar
Wallach, V., Williams, K. L., and Boundy, J., Snakes of the World: A Catalogue of Living and Extinct Species (Boca Raton, London and New York: CRC Press, 2014).Google Scholar
Nopcsa, F. B., Die Familien der Reptilien. Fortschritte der Geologie und Paläontologie, 2 (1923), 1210.Google Scholar
Tatarinov, L. P., The cranial structure of the lower Eocene sea snake ‘Archaeophis’ turkmenicus from Turkmenia. Paleontological Journal, 22 (1988), 7379.Google Scholar
LaDuke, T. C., Krause, D. W., Scanlon, J. D., and Kley, N. J., A Late Cretaceous (Maastrichtian) snake assemblage from the Maevarano Formation, Mahajanga basin, Madagascar. Journal of Vertebrate Paleontology, 30 (2010), 109138.Google Scholar
Rage, J.-C., L’origine des Colubroïdes et des Acrochordoïdes (Reptilia, Serpentes). Comptes Rendus de l’Académie des Sciences, D, 286 (1978), 595597.Google Scholar
Rage, J.-C., Fossil history. In Seigel, R. A., Collins, J. T., and Novak, S. S., eds., Snakes: Ecology and Evolutionary Biology (New York: Macmillan, 1987), pp. 5176.Google Scholar
Holman, J. A. and Case, G. R., A puzzling new snake (Reptilia: Serpentes) from the late Paleocene of Mississippi. Annals of the Carnegie Museum, 61 (1992), 197205.Google Scholar
Rage, J.-C., Un caenophidien primitif (Reptilia, Serpentes) dans l’Éocène inferieur. Comptes Rendu Sommaire des Séances de la Société Géologique de France, 2 (1975), 4647.Google Scholar
Cantino, P. D. and de Queiroz, K., International Code of Phylogenetic Nomenclature, v. 4c (2010). Downloaded from: https://www.ohio.edu/phylocode/PhyloCode4c.pdf.Google Scholar
Apesteguía, S. and Zaher, H., A Cretaceous terrestrial snake with robust hindlimbs and a sacrum. Nature, 440 (2006), 10371040.Google Scholar
Head, J. J., Fossil calibration dates for molecular phylogenetic analysis of snakes 1: Serpentes, Alethinophidia, Boidae, Pythonidae. Palaeontologia Electronica, 18.1.6FC (2015), 117.Google Scholar
O’Leary, M. A., Bouaré, M. L., Claeson, K. M., et al., Stratigraphy and paleobiology of the Upper Cretaceous–lower Paleogene sediments from the Trans-Saharan Seaway in Mali. Bulletin of the American Museum of Natural History, 436 (2019), 1177.Google Scholar
Wang, Y. Q., Meng, J., Beard, C. K., et al., Early Paleogene stratigraphic sequences, mammalian evolution and its response to environmental changes in Erlian Basin, Inner Mongolia, China. Science China Earth Sciences, 53 (2010), 19181926.Google Scholar
Dong, L.-P., Evans, S. E., and Wang, Y., Taxonomic revision of lizards from the Paleocene deposits of the Qianshan Basin, Anhui, China. Vertebrata PalAsiatica, 54 (2016), 243268.Google Scholar
Estes, R., Sauria Terrestria, Amphisbaenia (Handbuch der Paläoherpetologie, v. 10A) (Stuttgart: Gustav Fischer Verlag, 1983).Google Scholar
Georgalis, G. L., Necrosaurus or Palaeovaranus? Appropriate nomenclature and taxonomic content of an enigmatic fossil lizard clade (Squamata). Annales de Paléontologie, 103 (2017), 293303.Google Scholar
Georgalis, G. L. and Scheyer, T. M., A new species of Palaeopython (Serpentes) and other extinct squamates from the Eocene of Dielsdorf (Zurich, Switzerland). Swiss Journal of Geosciences, 112 (2019), 383417.Google Scholar
Archer, M., Godthelp, H., Hand, S., and Megirian, D., Fossil mammals of Riversleigh, northwestern Queensland: preliminary overview of biostratigraphy, correlation and environmental change. Australian Zoologist, 25 (1989), 2965.Google Scholar
Scanlon, J. D., Lee, M. S. Y., and Archer, M., Mid-Tertiary elapid snakes (Squamata, Colubroidea) from Riversleigh, northern Australia: early steps in a continent-wide adaptive radiation. Geobios, 36 (2003), 573601.Google Scholar
Scanlon, J. D. and Lee, M. S. Y., The Pleistocene serpent Wonambi and the early evolution of snakes. Nature, 403 (2000), 416420.Google Scholar
Woodhead, J., Hand, S. J., Archer, M., et al., Developing a radiometrically-dated chronologic sequence for Neogene biotic change in Australia, from the Riversleigh World Heritage Area of Queensland. Gondwana Research, 29 (2016), 153167.Google Scholar
Megirian, D., Murray, P., Schwartz, L., and von der Borch, C., Late Oligocene Kangaroo Well Local Fauna from the Ulta Limestone (new name), and climate of the Miocene oscillation across central Australia. Australian Journal of Earth Sciences, 51 (2004), 701741.Google Scholar
Archer, M., Arena, D. A., Bassarova, M., et al., Current status of species-level representation in faunas from selected fossil localities in the Riversleigh World Heritage Area, northwestern Queensland. Alcheringa Supplement, 1 (2006), 117.Google Scholar
Reguero, M., Goin, F., Acosta Hospitaleche, C., Dutra, T., and Marenssi, S., Late Cretaceous/Paleogene West Antarctica Terrestrial Biota and Its Intercontinental Affinities (Dordrecht: Springer, 2013).Google Scholar
Legendre, S., Sigé, B., Astruc, G., et al., Les phosphorites du Quercy: 30 ans de recherche. Bilan et perspectives. Geobios, 30, supplement 1(1997), 331345.Google Scholar
Smith, K. T., Schaal, S. F. K., and Habersetzer, J., eds., Messel: An Ancient Greenhouse Ecosystem (Stuttgart: Schweizerbart, 2018).Google Scholar
Krumbiegel, G., Haubold, H., and Rüffle, L., Das eozäne Geiseltal : ein mitteleuropäisches Braunkohlenvorkommen und seine Pflanzen- und Tierwelt (Wittenberg: Ziemsen, 1983).Google Scholar
Friedman, M. and Carnevale, G., The Bolca Lagerstätten: shallow marine life in the Eocene. Journal of the Geological Society, London, 175 (2018), 569579.Google Scholar
Szyndlar, Z. and Rage, J.-C., Non-erycine Booidea from the Oligocene and Miocene of Europe (Krakow: Polish Academy of Sciences, 2003).Google Scholar
Woodburne, M. O., Goin, F. J., Bond, M., et al., Paleogene land mammal faunas of South America; a response to global climatic changes and indigenous floral diversity. Journal of Mammalian Evolution, 21 (2014), 173.Google Scholar
Woodburne, M. O., Goin, F. J., Raigemborn, M. S., et al., Revised timing of the South American early Paleogene land mammal ages. Journal of South American Earth Sciences, 54 (2014), 109119.Google Scholar
Estes, R. and Báez, A., Herpetofaunas of North and South America during the Late Cretaceous and Cenozoic: Evidence for interchange? In Stehli, F. G. and Webb, S. D., eds., The Great American Interchange. Topics in Geobiology, Vol. 4 (New York: Plenum Press, 1985), pp. 139197.Google Scholar
Simpson, G. G., Splendid Isolation: The Curious History of South American Mammals (New Haven, Conn.: Yale University Press, 1980).Google Scholar
Smith, K. T., A new lizard assemblage from the earliest Eocene (zone Wa0) of the Bighorn Basin, Wyoming, USA: Biogeography during the warmest interval of the Cenozoic. Journal of Systematic Palaeontology, 7 (2009), 299358.Google Scholar
Georgalis, G. L. and Smith, K. T., Constrictores Oppel, 1811 - the available name for the taxonomic group uniting boas and pythons. Vertebrate Zoology, 70 (2020), 291304.Google Scholar
Noonan, B. P. and Chippindale, P. T., Dispersal and vicariance: The complex evolutionary history of boid snakes. Molecular Phylogenetics and Evolution, 40 (2006), 347358.Google Scholar
Smith, K. T. and Scanferla, A., A nearly complete skeleton of the oldest definitive erycine boid (Messel, Germany). Geodiversitas, 43 (2021), 124.Google Scholar
Wilcox, T. P., Zwickl, D. J., Heath, T. A., and Hillis, D. M., Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular Phylogenetics and Evolution, 25 (2002), 361371.Google Scholar
Scanlon, J. D., Montypythonoides: the Miocene snake Morelia riversleighensis (Smith and Plane, 1985) and the geographical origin of pythons. Memoirs of the Association of Australasian Palaeontologists, 25 (2001), 135.Google Scholar
Szyndlar, Z. and Böhme, W., Die fossilen Schlangen Deutschlands: Geschichte der Faunen und ihrer Erforschung. Mertensiella, 3 (1993), 381431.Google Scholar
Zaher, H. and Smith, K. T., Pythons in the Eocene of Europe reveal a much older divergence of the group in sympatry with boas. Biology Letters, 16 (2020), 20200735.Google Scholar
McCartney, J. A., Bouchard, S. N., Reinhardt, J. A., et al., The oldest lamprophiid (Serpentes, Caenophidia) fossil from the late Oligocene Rukwa Rift Basin, Tanzania and the origins of African snake diversity. Geobios, 6667 (2021), 6775.Google Scholar
Gasc, J.-P., Snake vertebrae – a mechanism or merely a taxonomist’s toy? In Bellairs, A. d. A. and Cox, C. B., eds., Morphology and Biology of Reptiles. Linnean Society Symposium Series Number 3 (London: Academic Press, 1976), pp. 177190.Google Scholar
Owen, R., Monograph on the Fossil Reptilia of the London Clay. Part II. Crocodilia, Ophidia (London: The Palaeontographical Society, 1850).Google Scholar
Mosauer, W., The myology of the trunk region of snakes and its significance for ophidian taxonomy and phylogeny. Publications of the University of California at Los Angeles in Biological Sciences, 1 (1935), 81120.Google Scholar
Johnson, R. G., The adaptive and phylogenetic significance of vertebral form in snakes. Evolution, 9 (1955), 367388.Google Scholar
Schaal, S., Baszio, S., and Habersetzer, J., Differenzierung von Schlangenarten anhand qualitativer und quantitativer Merkmale sowie konventioneller Streckenmaße und Indizes. Courier Forschungsinstitut Senckenberg, 255 (2005), 133169.Google Scholar
Yi, H. and Norell, M. A., The burrowing origin of modern snakes. Science Advances, 1 (2015), e1500743.Google Scholar
Palci, A., Hutchinson, M. N., Caldwell, M. W., and Lee, M. S. Y., The morphology of the inner ear of squamate reptiles and its bearing on the origin of snakes. Royal Society Open Science, 4 (2017), 170685.Google Scholar
Janensch, W., Über Archaeophis proavus Mass., eine Schlange aus dem Eocän des Monte Bolca. Beiträge zur Paläontologie und Geologie Östereich-Ungarns und des Orients, 19 (1906), 133.Google Scholar
Marsh, O. C., Introduction and Succession of Vertebrate Life in America (New Haven, Connecticut: Unknown, 1877).Google Scholar
Houssaye, A., Rage, J.-C., Bardet, N., et al., New highlights about the enigmatic marine snake Palaeophis maghrebianus (Palaeophiidae; Palaeophiinae) from the Ypresian (Lower Eocene) phosphates of Morocco. Palaeontology, 56 (2013), 647–61.Google Scholar
Houssaye, A., Herrel, A., Boistel, R., and Rage, J.-C., Adaptation of the vertebral inner structure to an aquatic life in snakes: Pachyophiid peculiarities in comparison to extant and extinct forms. Comptes Rendus Palevol, 18 (2019), 783799.Google Scholar
Westgate, J. W., Paleoecology and biostratigraphy of marginal marine Gulf Coast Eocene Vertebrate localities. In Gunnell, G. F., ed., Eocene Biodiversity: Unusual Occurrences and Rarely Sampled Habitats (New York: Kluwer Academic, 2001), pp. 263297.Google Scholar
Hutchison, J. H., Pterosphenus cf. P. schucherti Lucas (Squamata, Palaeophidae) from the late Eocene of peninsular Florida. Journal of Vertebrate Paleontology, 5 (1985), 2023.Google Scholar
Averianov, A. O., Paleogene sea snakes from the eastern part of Tethys. Russian Journal of Herpetology, 4 (1997), 128142.Google Scholar
Duffaud, S. and Rage, J.-C., Les remplissages karstiques polyphasés (Éocène, Oligocène, Pliocène) de Saint-Maximin (Phosphorites du Gard) et leur apport à la connaissance des faunes européennes, notamment pour l’Éocène moyen (MP 13). 2.– Systématique: amphibiens et reptiles. In Aguilar, J. -P., Legendre, S., and Michaux, J., eds., Actes du Congrès BiochroM’97 (Mémoire Travaux EPHE 21) (Montpellier: Institut Montpellier, 1997), pp. 729–35.Google Scholar
Parmley, D. and DeVore, M., Palaeopheid snakes from the late Eocene Hardie Mine local fauna of central Georgia. Southeastern Naturalist, 4 (2005), 703722.Google Scholar
Holman, J. A., Dockery, D. T., III, and Case, G. R., Paleogene snakes of Mississippi. Mississippi Geology, 11 (1990 [1991]), 112.Google Scholar
Janensch, W., Pterosphenus Schweinfurthi Andrews und die Entwicklung der Palaeophiden. Archiv für Biontologie, 1 (1906), 311350.Google Scholar
Greene, H. W., Dietary correlates of the origin and radiation of snakes. American Zoologist, 23 (1983), 431441.Google Scholar
Smith, K. T. and Scanferla, A., Fossil snake preserving three trophic levels and evidence for an ontogenetic dietary shift. Palaeobiodiversity and Palaeoenvironments, 96 (2016), 589599.Google Scholar
Marsh, O. C., Description of a new and gigantic fossil Serpent (Dinophis grandis) from the Tertiary of New Jersey. American Journal of Science, Series 2, 48 (1869), 397400.Google Scholar
Andrews, C. W., A Descriptive Catalogue of the Tertiary Vertebrata of the Fayûm, Egypt (London: Longmans, 1906).Google Scholar
Rage, J.-C., Palaeophis colossaeus nov. sp. (le plus grand Serpent connu?) de l’Eocene du Mali et le probleme du genre chez les Palaeopheinae. Comptes Rendus de l’Académie des Sciences (Série II), 296 (1983), 17411744.Google Scholar
Rio, J. P. and Mannion, P. D., The osteology of the giant snake Gigantophis garstini from the upper Eocene of North Africa and its bearing on the phylogenetic relationships and biogeography of Madtsoiidae. Journal of Vertebrate Paleontology, 37 (2017), e1347179.Google Scholar
McCartney, J. A., Roberts, E. M., Tapanila, L., and O’Leary, M. A., Large palaeophiid and nigerophiid snakes from Paleogene Trans-Saharan Seaway deposits of Mali. Acta Palaeontologica Polonica, 63 (2018), 207220.Google Scholar
Rage, J.-C., Fossil snakes from the Palaeocene of São José de Itaboraí, Brazil. Part III. Ungaliophiinae, booids incertae sedis, and Caenophidia. Summary, update, and discussion of the snake fauna from the locality. Palaeovertebrata, 36 (2008), 3773.Google Scholar
Schaal, S. and Baszio, S., Messelophis ermannorum n. sp., eine neue Zwergboa (Serpentes: Boidae: Tropidopheinae) aus dem Mittel-Eozän von Messel. Courier Forschungsinstitut Senckenberg, 252 (2004), 6777.Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (Vienna: R Foundation for Statistical Computing, 2016).Google Scholar
Raup, D. M., Taxonomic diversity during the Phanerozoic. Science, 177 (1972), 10651071.Google Scholar
Benson, R. B. J., Butler, R. J., Lindgren, J., and Smith, A. S., Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proceedings of the Royal Society of London B, 277 (2009), 829834.Google Scholar
Kowalewski, M. and Flessa, K. W., Improving with age: The fossil record of lingulide brachiopods and the nature of taphonomic megabiases. Geology, 24 (1996), 977980.Google Scholar
Rosenzweig, M. L., Species Diversity in Space and Time (Cambridge, UK: Cambridge University Press, 1995).Google Scholar
Gotelli, N. J. and Chao, A., Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In Levin, S. A., ed., Encyclopedia of Biodiversity (2nd ed), Vol 5 (Waltham, Mass.: Academic Press, 2013), pp. 195211.Google Scholar
Colwell, R. K.. Estimate S v9.0 (PC). 9.0 ed. (Storrs, Connecticut: University of Connecticut; 2013).Google Scholar
Uetz, P., Freed, P., and Hosek, J., The Reptile Database, www.reptile-database.org. (2021).Google Scholar
Xing, Y. W., Onstein, R. E., Carter, R. J., Stadler, T., and Linder, H. P., Fossils and a large molecular phylogeny show that the evolution of species richness, generic diversity, and turnover rates are disconnected. Evolution, 68 (2014), 28212832.Google Scholar
Pokrant, F., Kindler, C., Ivanov, M., et al. Integrative taxonomy provides evidence for the species status of the Ibero-Maghrebian grass snake Natrix astreptophora . Biological Journal of the Linnean Society, 118 (2016), 873888.Google Scholar

References

Bohaty, S. M. and Zachos, J. C., Significant Southern Ocean warming event in the late middle Eocene. Geology, 31 (2003), 10171020.Google Scholar
Bohaty, S. M., Zachos, J. C., Florindo, F., and Delaney, M. L., Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography, 24 (2009), PA2207.Google Scholar
Rage, J.-C., Mesozoic and Cenozoic squamates of Europe. Palaeobiodiversity and Palaeoenvironments, 93 (2013), 517543.Google Scholar
Cleary, T. J., Benson, R. B. J., Evans, S. E., and Barrett, P. M., Lepidosaurian diversity in the Mesozoic–Palaeogene: the potential roles of sampling biases and environmental drivers. Royal Society Open Science, 5 (2018), 171830.Google Scholar
Szyndlar, Z. and Rage, J.-C., Fossil record of the true vipers. In Schuett, G. W., Höggren, M., Douglas, M. E. and Greene, H. W., eds., Biology of the Vipers (Eagle Mountain: Eagle Mountain Publishing, 2002), pp. 419444.Google Scholar
Szyndlar, Z. and Rage, J.-C., Non-erycine Booidea from the Oligocene and Miocene of Europe (Kraków: Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, 2003).Google Scholar
Szyndlar, Z., Early Oligocene to Pliocene Colubridae of Europe: a review. Bulletin de la Société Géologique de France, 183 (2012), 661681.Google Scholar
Szyndlar, Z., A review of Neogene and Quaternary snakes of Central and Eastern Europe. Part I: Scolecophidia, Boidae, Colubridae. Estudios geológicos, 47 (1991), 103126.Google Scholar
Szyndlar, Z., A rewiew of Neogene and Quaternary snakes of Central and Eastern Europe. Part II: Natricinae, Elapidae, Viperidae. Estudios geológicos, 47 (1991), 237266.Google Scholar
Venczel, M., Middle-late Miocene snakes from the Pannonian Basin. Acta Palaeontologica Romaniae, 7 (2011), 343349.Google Scholar
Pyron, R. A., Reynolds, R. G., and Burbrink, F. T., A taxonomic revision of boas (Serpentes: Boidae). Zootaxa, 3846 (2014), 249260.Google Scholar
Zaher, H., Murphy, R. W., Arredondo, J. C., et al.Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). PloS ONE14 (2019), e0216148.Google Scholar
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502520.Google Scholar
Ivanov, M., Changes in the composition of the European snake fauna during the Early Miocene and at the Early/Middle Miocene transition. Paläontologische Zeitschrift, 74/4 (2001), 563573.Google Scholar
Čerňanský, A., Vasilyan, D., Georgalis, G. L., et al., First record of fossil anguines (Squamata; Anguidae) from the Oligocene and Miocene of Turkey. Swiss Journal of Geosciences, 110 (2017), 741751.Google Scholar
Vasilyan, D., Roček, Z., Ayvazyan, A., and Claessens, L., Fish, amphibian and reptilian faunas from latest Oligocene to middle Miocene localities from Central Turkey. Palaeobiodiversity and Palaeoenvironments, 99 (2019), 723757.Google Scholar
Bernor, R. L., Brunet, M., Ginsburg, L., et al., A consideration of some major topics concerning Old World Miocene Mammalian chronology, migrations and paleogeography. Geobios, 20 (1987), 431439.Google Scholar
Mosbrugger, V., Utescher, T., and Dilcher, D. L., Cenozoic continental climatic evolution of Central Europe. PNAS, 102 (2005), 1496414969.Google Scholar
Zhang, Q-Q, Smith, T., Yang, J., and Li, C.-S., Evidence of a cooler continental climate in East China during the warm early Cenozoic. PLoS ONE, 11 (2016), e0155507.Google Scholar
Rögl, F., Circum-Mediterranean Miocene palaeogeography. In Rössner, G. E. and Heissig, K., eds., The Miocene Land Mammals of Europe (München: Verlag Dr. Friedrich Pfeil, 1999), pp. 3948.Google Scholar
Szyndlar, Z. and Hoşgör, I., Bavarioboa sp. (Serpentes, Boidae) from the Oligocene/Miocene of eastern Turkey with comments on connections between European and Asiatic snake faunas. Acta Palaeontologica Polonica, 57 (2012), 667671.Google Scholar
Syromyatnikova, E., Georgalis, G. L., Mayda, S., Kaya, T., and Saraç, G., A new early Miocene herpetofauna from Kilçak, Turkey. Russian Journal of Herpetology, 26 (2019), 205224.Google Scholar
Head, J. J., Mohabey, D. M., and Wilson, J. A., Acrochordus Hornstedt (Serpentes, Caenophidia) from the Miocene of Gujarat, western India: temporal constraints on dispersal of a derived snake. Journal of Vertebrate Paleontology, 27 (2007), 720723.Google Scholar
Hoffstetter, R., Les serpents du Néogène du Pakistan (couches des Siwaliks). Bulletin de la Société Géologique de France, 7 (1964), 467474.Google Scholar
West, R. M., Hutchison, J. H., and Munthe, J., Miocene vertebrates from the Siwalik Group, western Nepal. Journal of Vertebrate Paleontology, 11 (1991), 108129.Google Scholar
J-C. Rage, and Ginsburg, L., Amphibians and squamates from the Early Miocene of Li Mae Long, Thailand: the richest and most diverse herpetofauna from the Cainozoic of Asia. In Roček, Z. and Hart, S., eds., Herpetology ’97 (Prague: Ministry of Environment of the Czech Republic, 1997), pp. 167168.Google Scholar
Rage, J.-C., Gupta, S. S., and Prasad, G. V. R., Amphibians and squamates from the Neogene Siwalik beds of Jammu and Kashmir, India. Paläontologische Zeitschrift, 75 (2001), 197205.Google Scholar
Head, J., Snakes of the Siwalik Group (Miocene of Pakistan): Systematics and relationships to environmental change. Palaeontologia Electronica, 8.1.18A (2005), 133.Google Scholar
Sanders, K. L., Mumpuni, A. Hamidy, J. J. Head, , and Gower, D. J., Phylogeny and divergence times of filesnakes (Acrochordus): inferences from morphology, fossils and three molecular loci. Molecular Phylogenetics and Evolution, 56 (2010), 857867.Google Scholar
Head, J. J., Mahlow, K., and Müller, J., Fossil calibration dates for molecular phylogenetic analysis of snakes 2: Caenophidia, Colubroidea, Elapoidea, Colubridae. Palaeontologia Electronica, 19 (2016), 121.Google Scholar
Szyndlar, Z., Snake fauna (Reptilia: Serpentes) from the Early/Middle Miocene of Sandelzhausen and Rothenstein 13 (Germany). Paläontologische Zeitschrift, 83 (2009), 5566.Google Scholar
Mennecart, B., Zoboli, D., Costeur, L., and Pillola, G. L., On the systematic position of the oldest insular ruminant Sardomeryx oschiriensis (Mammalia, Ruminantia) and the early evolution of the Giraffomorpha. Journal of Systematic Palaeontology (published online June 2018): https://doi.org/10.1080/14772019.2018.1472145.Google Scholar
Venczel, M. and Sanchíz, B., Lower Miocene Amphibians and Reptiles from Oschiri (Sardinia, Italy). Hantkeniana, 5 (2006), 7275.Google Scholar
Čerňanský, A., Rage, J.-C., and Klembara, J., The Early Miocene squamates of Amöneburg (Germany): The first stages of modern squamates in Europe. Journal of Systematic Palaeontology, 13/2 (2015), 97128.Google Scholar
Kayseri-Özer, M. S., Spatial distribution of climatic conditions from the Middle Eocene to Late Miocene based on palynoflora in Central, Eastern and Western Anatolia. Geodinamica Acta, 26/1–2 (2013), 122–157.Google Scholar
Hoffstetter, R. and Rage, J.-C., Les Erycinae fossiles de France (Serpentes, Boidae). Compréhension et histoire de la sous-famille. Annales de Paléontologie (Vertébrés), 58/1 (1972), 81124.Google Scholar
Szyndlar, Z. and Böhme, W., Die fossile Schlangen Deutschlands: Geschichte der Faunen und ihrer Erforschung. Mertensiella, 3 (1993), 381431.Google Scholar
Müller, J., Untermiozäne Kieferfragmente von Schlangen (Reptilia: Serpentes: Erycinae) aus der französischen Lokalität Poncenat. Neues Jahrbuch für Geologie und Paläontologie, Mh., 1998/2 (1998), 119128.Google Scholar
Szyndlar, Z. and Schleich, H. H., Description of Miocene Snakes from Petersbuch 2 with comments on the Lower and Middle Miocene Ophidian faunas of Southern Germany. Stuttgarter Beiträge zur Naturkunde, B 192 (1993), 147.Google Scholar
Kuch, U., Müller, J., Mödden, C., and Mebs, D., Snake fangs from the Lower Miocene of Germany: evolutionary stability of perfect weapons. Naturwissenschaften, 93 (2006), 8487.Google Scholar
Rage, J.-C., The oldest known colubrid snakes. The state of the art. In Z. Szyndlar, ed., A Festschrift in honour of Professor Marian Młynarski on the occasion of his retirement, Acta zoologica cracoviensia, 31/13 (1988), 457–474.Google Scholar
Grunert, P., Tzanova, A., Harzhauser, M., and Piller, W. E., Mid-Burdigalian Paratethyan alkenone record reveals link between orbital forcing, Antarctic ice-sheet dynamics and European climate at the verge to Miocene Climate Optimum. Global and Planetary Change, 123(Part A) (2014), 3643.Google Scholar
Böhme, M., Bruch, A., and Selmeier, A., The reconstruction of Early and Middle Miocene climate and vegetation in Southern Germany as determined from the fossil wood flora. Palaeogeography, Palaeoclimatology, Palaeoecology, 253 (2007), 91114.Google Scholar
Paclík, V., Ivanov, M., and Luján, A. H., Early Miocene snakes from the locality of Wintershof-West (Germany). In Marcola, M., Mateus, O. and Moreno-Azanza, M., eds., Abstract book of the XVI Annual Meeting of the European Association of Vertebrate Palaeontology, Caparica, Portugal June 26th–July 1st (Lisbon, 2018), p. 144.Google Scholar
Ivanov, M., The oldest known Miocene snake fauna from Central Europe: Merkur-North locality, Czech Republic. Acta Palaeontologica Polonica, 47/3 (2002), 513534.Google Scholar
Römer, F., Über Python Euboïcus, eine fossile Riesenschlange aus tertiärem Kalkschiefer von Kumi auf der Insel Euboea [On Python Euboïcus, a fossil giant snake from the Tertiary shale of Kumi in the island of Euboea]. Zeitschrift der Deutschen Geologische Gesellschaft, 22 (1870), 582–590.Google Scholar
Georgalis, G. L., Abdel Gawad, M. K., Hassan, S. M., et al., Oldest co-occurrence of Varanus and Python from Africa–first record of squamates from the early Miocene of Moghra Formation, Western Desert, Egypt. PeerJ, 8 (2020), e9092.Google Scholar
Figueroa, A., McKelvy, A. D., Grismer, L. L. et al., A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. PLoS ONE, 11 (2016), e0161070.Google Scholar
Ivanov, M., Snakes of the lower/middle Miocene transition at Vieux-Collonges (Rhône; France), with comments on the colonization of western Europe by colubroids. Geodiversitas, 22/4 (2000), 559588.Google Scholar
Szyndlar, Z., Snake fauna from the Late Miocene of Rudabánya. Palaeontographia Italica, 90/2003 (2005), 3152.Google Scholar
Rage, J.-C. and Bailon, S., Amphibians and squamate reptiles from the late early Miocene (MN 4) of Béon 1 (Montréal-du-Gers, southwestern France). Geodiversitas, 27/3 (2005), 413–441.Google Scholar
Böhme, M., The Miocene Climatic Optimum: evidence from the ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 195 (2003), 389401.Google Scholar
Zachos, J. C., Dickens, G. R., and Zeebe, R. E., An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451 (2008), 279283.Google Scholar
Ivanov, M. and Böhme, M., Snakes from Griesbeckerzell (Langhian, Early Badenian), North Alpine Foreland Basin (Germany), with comments on the evolution of snake fauna in Central Europe during the Miocene Climatic Optimum. Geodiversitas, 33/3 (2011), 411449.Google Scholar
Bruch, A. A., Utescher, T., Alcalde Olivares, C., et al., Middle and Late Miocene spatial temperature patterns and gradients in Europe – preliminary results based on palaeobotanical climate reconstructions. Courier Forschungsinstitut Senckenberg, 249 (2004), 1527.Google Scholar
Böhme, M., Ilg, A., Ossig, A., and Küchenhoff, H., New method to estimate paleoprecipitation using fossil amphibians and reptiles and the middle and late Miocene precipitation gradients in Europe. Geology, 34/6 (2006), 425428.Google Scholar
Böhme, M., Lower Vertebrates (Teleostei, Amphibia, Sauria) from the Karpatian of the Korneuburg Basin – palaeoecological, environmental and palaeoclimatical implications. Beiträge zur Paläontologie, 27 (2002), 339353.Google Scholar
Tempfer, P. M., Amphibians and Reptiles of the Karpatian Central Paratethys. In Brzobohatý, R., Cicha, I., Kováč, M. and Rögl, F., eds., The Karpatian. A Lower Miocene Stage of the Central Paratethys (Brno: Masaryk University, 2003), pp. 285290.Google Scholar
Doláková, N. and Slamková, M., Palynological Characteristics of Karpatian Sediments. In Brzobohatý, R., Cicha, I., Kováč, M. and Rögl, F., eds., The Karpatian. A Lower Miocene Stage of the Central Paratethys (Brno: Masaryk University, 2003), pp. 325–337.Google Scholar
Thomas, H., Sen, S., Khan, M., Battail, B., and Ligabue, G., The Lower Miocene fauna of Al-Sarrar (Eastern province, Saudi Arabia), Atlal, Journal of Saudi Arabian Archaeology, 5 (1982), 109136.Google Scholar
Georgalis, G. L., Mayda, S., Alpagut, B., et al., The westernmost Asian record of pythonids (Serpentes): the presence of Python in a Miocene hominoid locality of Anatolia. Journal of Vertebrate Paleontology, (2020), https://doi.org/10.1080/02724634.2020.1781144.Google Scholar
Malakhov, D. V., The early Miocene herpetofauna of Ayakoz (Eastern Kazakhstan). Biota, 6/1–2 (2005), 2935.Google Scholar
Chkhikvadze, V. M., Preliminary results of studies on tertiary amphibians and squamate reptiles of the Zaisan Basin. In Darevsky, I., ed., Questions of herpetology, The Sixth All-Union Herpetological Conference (Tashkent: Nauka, 1985) pp. 234235. (in Russian)Google Scholar
Sun, A., Notes on fossil snakes from Shanwang, Shangtung. Vertebrata Palasiatica, 4 (1961), 310312.Google Scholar
Holman, J. A. and Tanimoto, M., Cf. Trimeresurus Lacépède (Reptilia: Squamata: Viperidae: Crotalinae) from the Early Miocene of Japan. Acta zoologica cracoviensia, 47/1 (2004), 17.Google Scholar
Ivanov, M., Čerňanský, A., Bonilla Salomón, I., and Luján, A. H., Early Miocene squamate assemblage from the Mokrá-Western Quarry (Czech Republic) and its palaeobiogeographical and palaeoenvironmental implications. Geodiversitas, 42/20 (2020), 343376.Google Scholar
Rage, J.-C. and Szyndlar, Z., Latest Oligocene-Early Miocene in Europe: Dark Period for booid snakes. Comptes Rendus Palevol, 4 (2005), 428435.Google Scholar
Augé, M. and Rage, J.-C., Les Squamates (Reptilia) du Miocéne moyen de Sansan (Gers, France). Mémoires du Muséum national d’Histoire naturelle, 183 (2000), 263313.Google Scholar
Szyndlar, Z. and Schleich, H. H., Two species of the genus Eryx (Serpentes; Boidae; Erycinae) from the Spanish Neogene with comments on the past distribution of the genus in Europe. Amphibia – Reptilia, 15 (1994), 233–248.Google Scholar
Szyndlar, Z. and Alférez, F., Iberian snake fauna of the Early/Middle Miocene transition. Revista Española de Herpetología, 19 (2005), 5770.Google Scholar
Szyndlar, Z. and Rage, J.-C., Oldest fossil vipers (Serpentes: Viperidae) from the Old World. Kaupia, 8 (1999), 920.Google Scholar
Szyndlar, Z. and Rage, J.-C., West Palearctic cobras of the genus Naja (Serpentes: Elapidae): interrelationships among extinct and extant species. Amphibia – Reptilia, 11 (1990), 385400.Google Scholar
Miklas-Tempfer, P. M., The Miocene Herpetofaunas of Grund (Caudata; Chelonii, Sauria, Serpentes) and Mühlbach am Manhartsberg (Chelonii, Sauria, Amphisbaenia, Serpentes), Lower Austria. Annalen des Naturhistorischen Museums in Wien, A 104 (2003), 195235.Google Scholar
Daxner-Höck, G., Miklas-Tempfer, P. M., Göhlich, U. B., et al., Marine and terrestrial vertebrates from the Middle Miocene of Grund (Lower Austria). Geologica Carpathica, 55/2 (2004), 191197.Google Scholar
McCartney, J. A., Stevens, N. J., and O’Connor, P. M., The Earliest Colubroid-Dominated Snake Fauna from Africa: Perspectives from the Late Oligocene Nsungwe Formation of Southwestern Tanzania. PLoS ONE, 9(3) (2014), e90415.Google Scholar
Szyndlar, Z., Snakes from the Lower Miocene locality of Dolnice (Czechoslovakia). Journal of Vertebrate Paleontology, 7 (1987), 5571.Google Scholar
Szyndlar, Z., Vertebrates from the Early Miocene lignite deposits of the opencast mine Oberdorf (Western Styrian Basin, Austria). Annalen des Naturhistorischen Museums in Wien, A 99 (1998), 3138.Google Scholar
Salvi, D., Mendes, J., Carranza, S., and Harris, D. J., Evolution, biogeography and systematics of the western Palaearctic Zamenis ratsnakes. Zoologica Scripta, 47 (2018), 441461.Google Scholar
Rage, J.-C. and Holman, J. A., Des Serpents (Reptilia, Squamata) de type Nord-Américain dans le Miocéne francais. Evolution paralléle ou dispersion? Géobios , 17 (1984), 89104.Google Scholar
Holman, J. A., Reptiles of the Egelhoff local fauna (Upper Miocene) of Nebraska. Contributions from the Museum of Paleontology, the University of Michigan, 24 (1973), 125134.Google Scholar
Holman, J. A., Fossil Snakes of North America. Origin, Evolution, Distribution, Paleoecology (Bloomington: Indiana University Press, 2000).Google Scholar
Georgalis, G. L., Villa, A., Ivanov, M. et al. Early Miocene herpetofaunas from the Greek localities of Aliveri and Karydia – bridging a gap in the knowledge of amphibians and reptiles from the early Neogene of southeastern Europe. Historical Biology, 31 (2019), 10451064.Google Scholar
Zerova, G. A.. The first find of a fossil Sand Boa of the genus Albaneryx (Serpentes, Boidae) in the USSR. Vestnik Zoologii, 5 (1989), 3035.Google Scholar
Ivanov, M., Vasilyan, D., Böhme, M., and Zazhigin, V. S., Miocene snakes from northeastern Kazakhstan: new data on the evolution of snake assemblages in Siberia. Historical Biology, 31/10 (2019), 12841303.Google Scholar
Szyndlar, Z. and Zerova, G. A., Miocene snake fauna from Cherevichnoie (Ukraine, USSR), with description of a new species of Vipera . Neues Jahrbuch für Geologie und Paläontologie, A, 184 (1992), 8799.Google Scholar
Chaimanee, Y., Yamee, C., Marandat, B., and Jaeger, J.-J., First middle Miocene rodents from the Mae Moh Basin (Thailand): Biochronological and paleoenvironmental implications. Bulletin of Carnegie Museum of Natural History, 39 (2007), 157–63.Google Scholar
Rage, J.-C. and Danilov, I. G., A new Miocene fauna of snakes from eastern Siberia, Russia. Was the snake fauna largely homogenous in Eurasia during the Miocene? Comptes Rendus Palevol, 7 (2008), 383390.Google Scholar
Zerova, G. A., Lungu, A. N., and Chkhikvadze, V. M., Large fossil vipers from northern Black Seaside and Transcaucasus. Trudy zoologicheskogo Instituta Akademii Nauk S.S.S.R., 158/1986 (1987), 8999. (in Russian)Google Scholar
Zerova, G. A., Vipera (Daboia) ukrainica - a new viper (Serpentes; Viperidae) from the Middle Sarmatian (Upper Miocene) of the Ukraine. Neues Jahrbuch für Geologie und Paläontologie, A, 184 (1992), 235249.Google Scholar
Šmíd, J. and Tolley, K. A., Calibrating the tree of vipers under the fossilized birth-death model. Scientific Reports, 9 (2019), 5510 https://doi.org/10.1038/s41598–019-41290-2Google Scholar
Ivanov, M., The first European pit viper from the Miocene of Ukraine. Acta Palaeontologica Polonica, 44/3 (1999), 327334.Google Scholar
Ivanov, M., Fossil snake assemblages from the French Middle Miocene localities at La Grive (France). In Abstracts volume and excursions field guide, The 7th European workshop of vertebrate palaeontology, July 2–7, 2002, (Sibiu, 2002), pp. 26–27.Google Scholar
Georgalis, G. L., Villa, A., Ivanov, M., et al., Fossil amphibians and reptiles from the Neogene locality of Maramena (Greece), the most diverse European herpetofauna at the Miocene/Pliocene transition boundary. Palaeontologia Electronica, 22.3.68 (2019), 199.Google Scholar
Hoffstetter, R., Contribution à l’étude des Elapidae actuels et fossiles et de l’ostéologie des Ophidiens. Archives du Muséum d’Histoire Naturelle de Lyon, 15 (1939), 178.Google Scholar
Szyndlar, Z. and Zerova, G. A., Neogene cobras of the genus Naja (Serpentes: Elapidae) of East Europe. Annalen des Naturhistorischen Museums in Wien, A 91 (1990), 5361.Google Scholar
Rage, J.-C. and Szyndlar, Z., Natrix longivertebrata from the European Neogene, a snake with one of the longest known stratigraphic ranges. Neues Jahrbuch für Geologie und Paläontologie, Mh., 1 (1986), 5664.Google Scholar
Zerova, G. A., Late Cainozoic localities of snakes and lizards of Ukraine. Revue de Paléobiologie, 7 (1993), 273280.Google Scholar
Venczel, M. and Ştiucă, E., Late middle Miocene amphibians and squamate reptiles from Tauţ, Romania. Geodiversitas, 30 (2008), 731763.Google Scholar
Ivanov, M., Hadi evropského kenozoika. MS, PhD Thesis (Brno: Masaryk University, 1997), pp. 1217. (in Czech)Google Scholar
Ivanov, M., The snake fauna of Devínska Nová Ves (Slovak Republic) in relation to the evolution of snake assemblages of the European Middle Miocene. Acta Musei Moraviae, Scientiae geologicae, 83 (1998), 159172.Google Scholar
Böhme, M., Ilg, A., and Winklhofer, M., Late Miocene ‘washhouse’ climate in Europe. Earth and Planetary Science Letters, 275 (2008), 393401.Google Scholar
Agustí, J. and Antón, M., Mammoths, Sabertooths, and Hominids – 65 million Years of Mammalian Evolution in Europe, (New York: Columbia University Press, 2002).Google Scholar
Uetz, P., Freed, P., and Hošek, J., eds., The Reptile Database, www.reptile-database.org, (2020), accessed (20/04/2020).Google Scholar
Böhme, M., 3. Herpetofauna (Anura, Squamata) and palaeoclimatic implications: preliminary results. In G. Daxner-Höck, ed., Oligocene-Miocene vertebrates from the Valley of Lakes (Central Mongolia): morphology, phylogenetic and stratigraphic implications, Annalen des Naturhistorischen Museums in Wien, 108 (2007), 43–52.Google Scholar
Georgalis, G. L., Rage, J.-C., de Bonis, L., and Koufos, G. D., Lizards and snakes from the late Miocene hominoid locality of Ravin de la Pluie (Axios Valley, Greece). Swiss Journal of Geosciences, 111 (2018), 169181.Google Scholar
Bachmayer, F. and Szyndlar, Z., Ophidians (Reptilia: Serpentes) from the Kohfidisch fissures of Burgenland, Austria. Annalen des Naturhistorischen Museums in Wien, A 87 (1985), 79100.Google Scholar
Bachmayer, F. and Szyndlar, Z., A second contribution to the ophidian fauna (Reptilia, Serpentes) of Kohfidisch, Austria. Annalen des Naturhistorischen Museums in Wien, A 88 (1987), 2539.Google Scholar
Tempfer, P. M., The Herpetofauna (Amphibia: Caudata, Anura; Reptilia: Scleroglossa) of the Upper Miocene Locality Kohfidisch (Burgerland, Austria). Beiträge zur Paläontologie, 29 (2005), 145253.Google Scholar
Colombero, S., Angelone, C., Bonelli, E., et al., The Messinian vertebrate assemblages of Verduno (NW Italy): another brick for a latest Miocene bridge across the Mediterranean. Neues Jahrbuch für Geologie und Paläontologie, A, 272/3 (2014), 287324.Google Scholar
Codrea, V., Venczel, M., Ursachi, L., and Răţoi, B., A large viper from the early Vallesian (MN 9) of Moldova (E-Romania) with notes on the palaeobiogeography of late Miocene ‘Oriental vipers’. Geobios, 50 (2017), 401411.Google Scholar
Venczel, M. and Várdai, G., The genus Elaphe in the Carpathian Basin: Fossil record. Nymphaea Folia naturae Bihariae, 28 (2000), 6582.Google Scholar
Venczel, M., Late Miocene snakes from Polgárdi (Hungary). Acta zoologica cracoviensia, 37/1 (1994), 129.Google Scholar
Venczel, M., Late Miocene snakes (Reptilia: Serpentes) from Polgárdi (Hungary): a second contribution. Acta zoologica cracoviensia, 41/1 (1998), 122.Google Scholar
Bailon, S., Bover, P., Quintana, J., and Alcover, J. A., First fossil record of Vipera Laurenti 1768 ‘Oriental vipers complex’ (Serpentes: Viperidae) from the Early Pliocene of the western Mediterranean islands. Comptes Rendus Palevol, 9 (2010), 147154.Google Scholar
Torres, E., Bailon, S., Bover, P., and Alcover, J. A., Sobre la presencia de un vipérido de gran talla perteneciente al Complejo de Víboras Orientales en el yacimiento de Na Burguesa-1 (Mioceno Superior/Plioceno Inferior, Mallorca). Jornadas de Paleontología SEP, 30 (2014), 237240.Google Scholar
Blain, H.-A., Bailon, S., and Agustí, J., The geographical and chronological pattern of herpetofaunal Pleistocene extinctions on the Iberian Peninsula. Comptes Rendus Palevol, 15 (2016), 731744.Google Scholar
Szyndlar, Z., Fossil snakes from Poland. Acta zoologica cracoviensia, 28/1 (1984), 3156.Google Scholar
Pokrant, F., Kindler, C., Ivanov, M., et al., Integrative taxonomy provides evidence for the species status of the Ibero-Maghrebian grass snake Natrix astreptophora . Biological Journal of the Linnean Society, 118 (2016), 873888.Google Scholar
Delfino, M., Kotsakis, T., Arca, M., et al., Agamid lizards from the Plio-Pleistocene of Sardinia (Italy) and an overview of the European fossil record of the family. Geodiversitas, 30/3 (2008), 641656.Google Scholar
Georgalis, G. L., Villa, A., Vlachos, E., and Delfino, M., Fossil amphibians and reptiles from Plakias, Crete: A glimpse into the earliest late Miocene herpetofaunas of southeastern Europe. Geobios, 49 (2016), 433444.Google Scholar
Villa, A. and Delfino, M., Fossil lizards and worm lizards (Reptilia, Squamata) from the Neogene and Quaternary of Europe: an overview. Swiss Journal of Palaeontology, 138/2 (2019), 177211.Google Scholar
Szyndlar, Z., Ophidian fauna (Reptilia, Serpentes) from the Upper Miocene of Algora (Spain). Estudios geológicos, 41 (1985), 447465.Google Scholar
Szyndlar, Z., Two new extinct especies of the genera Malpolon and Vipera (Reptilia, Serpentes) from the Pliocene of Layna (Spain). Acta Zoologica Cracoviensia, 31/27 (1988), 687706.Google Scholar
Bailon, S. and Verbeke, C., Reptiles escamosos del Mioceno final (MN13) de Salobreña (Granada, España). In Martínez-Navarro, B., Palmqvist, P., Patrocinio Espigares, M. and Ros-Montoya, S., eds., Libro de resúmenes XXXV Jornadas de la Sociedad Española de Paleontología , (2019), pp. 3738.Google Scholar
Syromyatnikova, E. and Tesakov, A., Preliminary report on herpetofauna from the Solnechnodolsk locality (late Miocene), Russia. In MacKenzie, A., Maxwell, E. and Miller-Camp, J., eds., Abstracts of papers, 75th Annual Meeting of the Society of Vertebrate Paleontology, 14–17 October 2015, (Dallas, 2015), p. 221.Google Scholar
Villa, A. M., Carnevale, G., Pavia, M., et al., An overview on the late Miocene vertebrates from the fissure fillings of Monticino Quarry (Brisighella, Italy), with new data on non-mammalian taxa. Rivista Italiana di Paleontologia e Stratigrafia, 127 (2) (2021) 297354.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×