Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-04-30T22:40:07.584Z Has data issue: false hasContentIssue false

28 - Temporal cognition in Taï chimpanzees

Published online by Cambridge University Press:  25 November 2019

Christophe Boesch
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Roman Wittig
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Catherine Crockford
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Linda Vigilant
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Tobias Deschner
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Fabian Leendertz
Affiliation:
Robert Koch-Institut, Germany
Get access

Summary

Despite appealing support for theories that argue that social complexity is the main force driving primate brain-size evolution, it is still unclear how great apes were able to afford the evolution of larger and more expensive brains than sympatric species. Comparative phylogenetic studies suggest that the costs of evolutionary brain enlargement were overcome by a permanent increase in net energy intake, renewing interest in the role of ecological complexity in primate brain-size evolution. As relatively larger-brained primates, like chimpanzees, show less seasonality in their net energy intake than smaller-brained species, larger brains are proposed to provide a ‘cognitive behavioural flexibility’ that facilitates the consumption of nutritious foods during periods of food scarcity (cognitive buffer hypothesis). To date, it remains unclear what this cognitive flexibility entails. In this chapter, I will provide evidence for a variety of mechanisms of temporal cognition that chimpanzees employ to gain first access to newly ripened, energy-rich fruit in a competitive and complex rainforest environment.

Type
Chapter
Information
The Chimpanzees of the Taï Forest
40 Years of Research
, pp. 451 - 466
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. P., Nordheim, E. V., Boesch, C. & Moermond, T. C. (2002). Factors influencing fission–fusion grouping in chimpanzees in the Taï National Park, Côte d’Ivoire. In Boesch, C., Hohmann, G. & Marchant, L. F. (eds.), Behavioural Diversity in Chimpanzees and Bonobos (pp. 90101). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Anderson, D. P., Nordheim, E., Moermond, T. C., Gone Bi, Z. B. & Boesch, C. (2005). Factors influencing tree phenology in Taï National Park, Côte d’Ivoire. Biotropica, 37, 631640.CrossRefGoogle Scholar
Anderson, J. R. (1984). Ethology and ecology of sleep in monkeys and apes. Advances in the Study of Behavior, 14, 165229.CrossRefGoogle Scholar
Ban, S. D., Boesch, C. & Janmaat, K. R. L. (2014). Taï chimpanzees anticipate revisiting high-valued fruit trees from further distances. Animal Cognition, 17, 13531364.Google Scholar
Barton, R. A. (1996). Neocortex size and behavioural ecology in primates. Proceedings of the Royal Society of London B, 263(1367), 173177.Google Scholar
Barton, R. A. (2000). Ecological and social factors in primate brain evolution. In Boinski, S. & Garber, P. A. (eds.), On the Move. How and Why Animals Travel in Groups (pp. 204237). Chicago: University of Chicago Press.Google Scholar
Carlson, B. A., Rothman, J. M. & Mitani, J. C. (2013). Diurnal variation in nutrients and chimpanzee foraging behavior. American Journal of Primatology, 75, 342349.CrossRefGoogle ScholarPubMed
Changizi, M. A. & Shimojo, S. (2008). ‘X-ray vision’ and the evolution of forward-facing eyes. Journal of Theoretical Biology, 254, 756767.Google Scholar
Chapman, C. A., Chapman, L. J., Wankham, R. W., Hunt, K., Gebo, D. & Gardner, L. (1992). Estimators of fruit abundance of tropical trees. Biotropica, 24, 527531.CrossRefGoogle Scholar
Chatelain, C., Kadjo, B., Kone, I. & Refisch, J. (2000). Relations Faune-Flore dans le Parc National de Tai: Une etude bibliographique. Programme Tropenbos, Côte d’Ivoire, pp. 1192.Google Scholar
Clutton‐Brock, T. H. & Harvey, P. H. (1980). Primates, brains and ecology. Journal of Zoology, 190, 309323.Google Scholar
DeCasien, A. R., Williams, S. A. & Higham, J. P. (2017). Primate brain size is predicted by diet but not sociality. Nature Ecology & Evolution, 1(5), 0112.CrossRefGoogle Scholar
Dominy, N. J. & Lucas, P. W. (2004). Significance of color, calories, and climate to the visual ecology of catarrhines. American Journal of Primatology, 62, 189207.CrossRefGoogle Scholar
Dominy, N. J., Lucas, P. W., Osorio, D. & Yamashita, N. (2001). The sensory ecology of primate food perception. Evolutionary Anthropology, 10, 171186.Google Scholar
Dominy, N. J., Yeakel, J. D., Bhat, U., Ramsden, L., Wrangham, R. W. & Lucas, P. W. (2016). How chimpanzees integrate sensory information to select figs. Interface Focus, 6(3), 20160001.CrossRefGoogle ScholarPubMed
Emery Thompson, M. & Wrangham, R. W. (2008). Diet and reproductive function in wild female chimpanzees (Pan troglodytes schweinfurthii) at Kibale National Park, Uganda. American Journal of Physical Anthropology, 135, 171181.Google Scholar
Furuichi, T. & Hashimoto, C. (2004). Botanical and topographical factors influencing nesting-site selection by chimpanzees in Kalinzu Forest, Uganda. International Journal of Primatology, 25, 755765.Google Scholar
Garber, P. A. (2000). Evidence for the use of spatial, temporal and social information by some primate foragers. In Boinski, S. & Garber, P. A. (eds.), On the Move. How and Why Animals Travel in Groups (pp. 261298). Chicago: University of Chicago Press.Google Scholar
Goné Bi, Z. B. (2007). Régime alimentaire des chimpanzés, distribution spatiale et phénologie des plantes dont les fruits sont consomme´s par les chimpanzés du Parc National de Taï, en Côte d’Ivoire. PhD dissertation, Université de Cocody.Google Scholar
Hernandez-Aguilar, R. A. (2009). Chimpanzee nest distribution and site reuse in a dry habitat: Implications for early hominin ranging. Journal of Human Evolution, 57, 350364.Google Scholar
Houle, A., Chapman, C. A. & Vickery, W. L. (2007). Intratree variation in fruit production and implications for primate foraging. International Journal of Primatology, 28, 11971217.CrossRefGoogle Scholar
Houle, A., Conklin‐Brittain, N. L. & Wrangham, R. W. (2014). Vertical stratification of the nutritional value of fruit: Macronutrients and condensed tannins. American Journal of Primatology, 76, 12071232.CrossRefGoogle ScholarPubMed
Janmaat, K. R. L. (2006). Fruits of enlightenment. Fruit localization strategies in wild mangabey monkeys. Doctoral dissertation, University of St Andrews.Google Scholar
Janmaat, K. R. L. (in press) What animals don’t do or fail to find: A novel observational approach for studying cognition in the wild. Journal of Evolutionary Anthropology.Google Scholar
Janmaat, K. R. L., Ban, S. D. & Boesch, C. (2013a). Taï chimpanzees use botanical skills to discover fruit: What we can learn from their mistakes. Animal Cognition, 16, 851860.Google Scholar
Janmaat, K. R. L., Ban, S. D. & Boesch, C. (2013b). Chimpanzees use long-term spatial memory to monitor large fruit trees and remember feeding experiences across seasons. Animal Behaviour, 86, 11831205.Google Scholar
Janmaat, K. R. L., Boesch, C., Byrne, R., Chapman, C. A., Gone Bi, Z. B., et al. (2016). Spatio‐temporal complexity of chimpanzee food: How cognitive adaptations can counteract the ephemeral nature of ripe fruit. American Journal of Primatology, 78, 626645.CrossRefGoogle ScholarPubMed
Janmaat, K., Byrne, R. W. & Zuberbühler, K. (2006a). Primates take weather into account when searching for fruits. Current Biology, 16, 12321237.CrossRefGoogle ScholarPubMed
Janmaat, K., Byrne, R. W. & Zuberbühler, K. (2006b). Evidence for a spatial memory of fruiting states of rainforest trees in wild mangabeys. Animal Behaviour, 72, 797807.CrossRefGoogle Scholar
Janmaat, K. R. L., Chapman, C. A., Meijer, R. & Zuberbühler, K. (2012). The use of fruiting synchrony by foraging mangabey monkeys: A ‘simple tool’ to find fruit. Animal Cognition, 15, 8396.Google Scholar
Janmaat, K. R. L., Polansky, L., Ban, S. D. & Boesch, C. (2014). Wild chimpanzees plan their breakfast time, type, and location. Proceedings of the National Academy of Sciences of the United States of America, 111, 16,343–16,348.Google ScholarPubMed
Janson, C. & Byrne, R. W. (2007). Resource cognition in wild primates – Opening up the black box. Animal Cognition, 10, 357367.CrossRefGoogle ScholarPubMed
Jenny, D. & Zuberbühler, K. (2005). Hunting behaviour in West African forest leopards. African Journal of Ecology, 43, 197200.CrossRefGoogle Scholar
Kissling, W. D., Rahbek, C. & Böhning-Gaese, K. (2007). Food plant diversity as broad-scale determinant of avian frugivore richness. Proceedings of the Royal Society of London B, 274(1611), 799808.Google ScholarPubMed
Koops, K., McGrew, W. C., de Vries, H. & Matsuzawa, T. (2012). Nest-building by chimpanzees (Pan troglodytes verus) at Seringbara, Nimba Mountains: Antipredation, thermoregulation, and antivector hypotheses. International Journal of Primatology, 33, 356380.Google Scholar
Lord, J. M. (2004). Frugivore gape size and the evolution of fruit size and shape in southern hemisphere floras. Austral Ecology, 29, 430436.Google Scholar
Marriott, J., Robinson, M. & Karikari, S. K. (1981). Starch and sugar transformation during the ripening of plantains and bananas. Journal of the Science of Food and Agriculture, 32, 10211026.CrossRefGoogle Scholar
Menzel, C. R. (1991). Cognitive aspects of foraging in Japanese monkeys. Animal Behaviour, 41, 397402.Google Scholar
Milton, K. (1981). Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. American Anthropologist, 83, 534548.CrossRefGoogle Scholar
Milton, K., Windsor, D. M., Morrison, D. W. & Estribi, M. A. (1982). Fruiting phenologies of two neotropical Ficus species. Ecology, 63, 752762.Google Scholar
Noser, R. & Byrne, R. W. (2007). Travel routes and planning of visits to out-of-sight resources in wild chacma baboons, Papio ursinus. Animal Behaviour, 73, 257266.CrossRefGoogle Scholar
O’Brien, T. G., Kinnaird, M. F., Dierenfeld, E. S., Conklin-Brittain, N. L., Wrangham, R. W. & Silver, S. C. (1998). What’s so special about figs? Nature, 392(6677), 668.CrossRefGoogle Scholar
Raby, C. R., Alexis, D. M., Dickinson, A. & Clayton, N. S. (2007). Planning for the future by western scrub-jays. Nature, 445(7130), 919.Google Scholar
Rakoczy, H., Clüver, A., Saucke, L., Stoffregen, N., Gräbener, A., Migura, J., et al. (2014). Apes are intuitive statisticians. Cognition, 131, 6068.Google Scholar
Samson, D. R., Muehlenbein, M. P. & Hunt, K. D. (2013). Do chimpanzees (Pan troglodytes schweinfurthii) exhibit sleep related behaviors that minimize exposure to parasitic arthropods? A preliminary report on the possible anti-vector function of chimpanzee sleeping platforms. Primates, 54, 7380.Google Scholar
Shanahan, M., So, S., Compton, S. G. & Corlett, R. (2001). Fig-eating by vertebrate frugivores: A global review. Biological Reviews, 76, 529572.CrossRefGoogle ScholarPubMed
Sussman, R. W., Rasmussen, D. T. & Raven, P. H. (2013). Rethinking primate origins again. American Journal of Primatology, 75, 95106.Google Scholar
van Woerden, J. T., Van Schaik, C. P. & Isler, K. (2010). Effects of seasonality on brain size evolution: Evidence from strepsirrhine primates. The American Naturalist, 176, 758767.Google Scholar
van Woerden, J. T., Willems, E. P., van Schaik, C. P. & Isler, K. (2012). Large brains buffer energetic effects of seasonal habitats in catarrhine primates. Evolution, 66, 191199.Google Scholar
Wallace, A. R. (1878). Tropical Nature, and Other Essays. London: Macmillan & Co.Google Scholar
Wheelwright, N. T. (1985). Fruit‐size, gape width, and the diets of fruit‐eating birds. Ecology, 66, 808818.Google Scholar
Wrangham, R. W., Conklin, N. L., Etot, G., Obua, J., Hunt, K. D., Hauser, M. D., et al. (1993). The value of figs to chimpanzees. International Journal of Primatology, 14, 243256.Google Scholar
Zuberbühler, K. & Janmaat, K. R. L. (2010). Foraging cognition in nonhuman primates. In Platt, M. L. & Ghazanfar, A. A. (eds.), Primate Neuroethology (pp. 6483). Oxford: Oxford University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×