Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-29T07:20:18.112Z Has data issue: false hasContentIssue false

19 - Intergenerational Transmission in Developmental Dyslexia

from Part II - Cross-Linguistic Perspectives on Developmental Dyslexia

Published online by Cambridge University Press:  27 September 2019

Ludo Verhoeven
Affiliation:
Radboud Universiteit Nijmegen
Charles Perfetti
Affiliation:
University of Pittsburgh
Kenneth Pugh
Affiliation:
Yale University, Connecticut
Get access

Summary

Developmental dyslexia is a neurologically based learning disorder that often runs in families (Fisher & DeFries, 2002). This chapter focuses on its intergenerational transmission, which refers to the transfer of traits and behaviors from parents to offspring, including genetic factors and nongenetic factors such as epigenetics and environment. Traditionally, transmission of genomic information (i.e., inheritance of DNA sequence) has been considered to be the key pathway by which behavior, cognitive abilities, character traits, and susceptibility to a disorder are inherited. However, growing evidence suggests that nongenetic factors play important roles in influencing gene function and modifying heritability. Combined, the effects of these factors likely result in the various phenotypes of dyslexia. Delineating the intergenerational transmission patterns of dyslexia provides means to further understand its etiology and may provide insight into early identification and preventive intervention.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altarelli, I., Leroy, F., Monzalvo, K. et al. (2014). Planum temporale asymmetry in developmental dyslexia: Revisiting an old question. Human Brain Mapping, 35, 57175735. doi: http://dx.doi.org/10.1002/hbm.22579.Google Scholar
Altarelli, I., Monzalvo, K., Iannuzzi, S. et al. (2013). A functionally guided approach to the morphometry of occipitotemporal regions in developmental dyslexia: Evidence for differential effects in boys and girls. The Journal of Neuroscience, 33, 1129611301. doi: http://dx.doi.org/10.1523/JNEUROSCI.5854-12.2013.CrossRefGoogle Scholar
Arnold, E. M., Goldston, D. B., Walsh, A. K. et al. (2005). Severity of emotional and behavioral problems among poor and typical readers. Journal of Abnormal Child Psychology, 33, 205217. doi: http://dx.doi.org/10.1007/s10802-005-1828-9.CrossRefGoogle ScholarPubMed
Berger, S. L., Kouzarides, T., Shiekhattar, R., & Shilatifard, A. (2009). An operational definition of epigenetics. Genes & Development, 23, 781783. doi: http://dx.doi.org/10.1101/gad.1787609.CrossRefGoogle ScholarPubMed
Black, J. M., Tanaka, H., Stanley, L. et al. (2012). Maternal history of reading difficulty is associated with reduced language-related gray matter in beginning readers. NeuroImage, 59, 30213032. doi: http://dx.doi.org/10.1016/j.neuroimage.2011.10.024.Google Scholar
Boets, B., De Smedt, B., Wouters, J., Lemay, K., & Ghesquie, P. (2007). No relation between 2D: 4D fetal testosterone marker and dyslexia. NeuroReport, 18, 14871491. doi: http://dx.doi.org/10.1097/WNR.0b013e3282e9a754 .Google Scholar
Booth, J. R., Burman, D. D., Meyer, J. R. et al. (2004). Development of brain mechanisms for processing orthographic and phonologic representations. Journal of Cognitive Neuroscience, 16, 12341249. doi: http://dx.doi.org/10.1162/0898929041920496.Google Scholar
Bowen, J. R., Gibson, F. L., & Hand, P. J. (2002). Educational outcome at 8 years for children who were born extremely prematurely: A controlled study. Journal of Paediatrics and Child Health, 38, 438444. doi: http://dx.doi.org/10.1046/j.1440-1754.2002.00039.x.Google Scholar
Bruck, M. (1992). Persistence of dyslexics’ phonological awareness deficits. Developmental Psychology, 28, 874886. doi: http://dx.doi.org/10.1037/0012-1649.28.5.874.Google Scholar
Burbridge, T. J., Wang, Y., Volz, A. J. et al. (2008). Postnatal analysis of the effect of embryonic knockdown and overexpression of candidate dyslexia susceptibility gene homolog Dcdc2 in the rat. Neuroscience, 152, 723733. doi: http://dx.doi.org/10.1016/j.neuroscience.2008.01.020.Google Scholar
Byrne, B., Coventry, W. L., Olson, R. K. et al. (2009). Genetic and environmental influences on aspects of literacy and language in early childhood: Continuity and change from preschool to Grade 2. Journal of Neurolinguistics, 22, 219236. doi: http://dx.doi.org/10.1016/j.jneuroling.2008.09.003.Google Scholar
Byrne, B., Olson, R. K., Samuelsson, S. et al. (2006). Genetic and environmental influences on early literacy. Journal of Research in Reading, 29, 3349. doi: http://dx.doi.org/10.1111/j.1467-9817.2006.00291.x.CrossRefGoogle Scholar
Caspi, A., & Moffitt, T. E. (2006). Gene-environment interactions in psychiatry: Joining forces with neuroscience. Nature Reviews Neuroscience, 7, 583590. doi: http://dx.doi.org/10.1038/nrn1925.CrossRefGoogle ScholarPubMed
Chang, E. F., Rieger, J. W., Johnson, K. et al. (2010). Categorical speech representation in human superior temporal gyrus. Nature Neuroscience, 13, 14281432. doi: http://dx.doi.org/10.1038/nn.2641.CrossRefGoogle ScholarPubMed
Chura, L. R., Lombardo, M. V., Ashwin, E. et al. (2010). Organizational effects of fetal testosterone on human corpus callosum size and asymmetry. Psychoneuroendocrinology, 35, 122132. doi: http://dx.doi.org/10.1016/j.psyneuen.2009.09.009.CrossRefGoogle ScholarPubMed
Clark, K. A., Helland, T., Specht, K. et al. (2014). Neuroanatomical precursors of dyslexia identified from pre-reading through to age 11. Brain, 137, 31363141. doi: http://dx.doi.org/10.1093/brain/awu229.Google Scholar
Cope, N., Eicher, J. D., Meng, H. et al. (2012). Variants in the DYX2 locus are associated with altered brain activation in reading-related brain regions in subjects with reading disability. NeuroImage, 63, 148156. doi: http://dx.doi.org/10.1016/j.neuroimage.2012.06.037.Google Scholar
Dahdouh, F., Anthoni, H., Tapia-Páez, I. et al. (2009). Further evidence for DYX1C1 as a susceptibility factor for dyslexia. Psychiatric Genetics, 19, 5963. doi: http://dx.doi.org/10.1097/YPG.0b013e32832080e1.Google Scholar
Darki, F., Peyrard-Janvid, M., Matsson, H., Kere, J., & Klingberg, T. (2012). Three dyslexia susceptibility genes, DYX1C1, DCDC2, and KIAA0319, affect temporo-parietal white matter structure. Biological Psychiatry, 72, 671676. doi: http://dx.doi.org/10.1016/j.biopsych.2012.05.008.Google Scholar
Davies, P. T., & Windle, M. (1997). Gender-specific pathways between maternal depressive symptoms, family discord, and adolescent adjustment. Developmental Psychology, 33, 657668. doi: http://dx.doi.org/10.1037/0012-1649.33.4.657.Google Scholar
Eicher, J. D., & Gruen, J. R. (2013). Imaging-genetics in dyslexia: Connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments. Molecular Genetics and Metabolism, 110, 201212. doi: http://dx.doi.org/10.1016/j.ymgme.2013.07.001.Google Scholar
Evans, T. M., Flowers, D. L., Napoliello, E. M., & Eden, G. F. (2014). Sex-specific gray matter volume differences in females with developmental dyslexia. Brain Structure & Function, 219, 10411054. doi: http://dx.doi.org/10.1007/s00429-013-0552-4.CrossRefGoogle ScholarPubMed
Fisher, S. E., & DeFries, J. C. (2002). Developmental dyslexia: Genetic dissection of a complex cognitive trait. Nature Reviews. Neuroscience, 3, 767780. doi: http://dx.doi.org/10.1038/nrn936.CrossRefGoogle ScholarPubMed
Flint, J., Timpson, N., & Munafò, M. (2014). Assessing the utility of intermediate phenotypes for genetic mapping of psychiatric disease. Trends in Neurosciences, 37, 733741. doi: http://dx.doi.org/10.1016/j.tins.2014.08.007.CrossRefGoogle ScholarPubMed
Friend, A., DeFries, J. C., & Olson, R. K. (2008). Parental education moderates on reading genetic influences disability parental. Psychological Science, 19, 11241130. doi: http://dx.doi.org/10.1111/j.1467-9280.2008.02213.x.CrossRefGoogle ScholarPubMed
Galaburda, A. M., & Kemper, T. L. (1979). Cytoarchitectonic abnormalities in developmental dyslexia: A case study. Annals of Neurology, 6, 94100. doi: http://dx.doi.org/10.1002/ana.410060203.Google Scholar
Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F., & Geschwind, N. (1985). Developmental dyslexia: Four consecutive patients with cortical anomalies. Annals of Neurology, 18, 222233. doi: http://dx.doi.org/10.1002/ana.410180210.Google Scholar
Geschwind, N., & Galaburda, A. M. (1985). Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Archives of Neurology, 42, 428459. doi: http://dx.doi.org/10.1001/archneur.1985.04060070024012.CrossRefGoogle Scholar
Gilger, J. W., Pennington, B. F., & DeFries, J. C. (1992). A twin study of the etiology of comorbidity: Attention-deficit hyperactivity disorder and dyslexia. Journal of the American Academy of Child & Adolescent Psychiatry, 31, 343348. doi: http://dx.doi.org/ 10.1097/00004583-199203000-00024.CrossRefGoogle ScholarPubMed
Grigorenko, E. L. (2004). Genetic bases of developmental dyslexia: A capsule review of heritability estimates. Enfance, 56, 273288. doi: http://dx.doi.org/10.3917/enf.563.0273.CrossRefGoogle Scholar
Habib, M. (2000). The neurological basis of developmental dyslexia: An overview and working hypothesis. Brain, 123, 23732399. doi: http://dx.doi.org/10.1093/brain/123.12.2373Google Scholar
Hancock, R., Pugh, K. R., & Hoeft, F. (2017). Neural noise hypothesis of developmental dyslexia. Trends in Cognitive Science, 6, 434–48. doi: http://dx.doi.org/10.1016/j.tics.2017.03.008.Google Scholar
Hancock, R., Richlan, F., & Hoeft, F. (2017). Possible roles for fronto-striatal circuits in reading disorder. Neuroscience & Biobehavioral Reviews, 72, 243260. doi: http://dx.doi.org/10.1016/j.neubiorev.2016.10.025.Google Scholar
Hannula-Jouppi, K., Kaminen-Ahola, N., Taipale, M. et al. (2005). The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genetics, 1(4), e50. doi: http://dx.doi.org/10.1371/journal.pgen.0010050.Google Scholar
Hariri, A. R., Drabant, E. M., & Weinberger, D. R. (2006). Imaging genetics: Perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biological Psychiatry, 59, 888897. doi: http://dx.doi.org/10.1016/j.biopsych.2005.11.005.CrossRefGoogle ScholarPubMed
Harlaar, N., Spinath, F. M., Dale, P. S., & Plomin, R. (2005). Genetic influences on early word recognition abilities and disabilities: A study of 7-year-old twins. Journal of Child Psychology and Psychiatry and Allied Disciplines, 46, 373384. doi: http://dx.doi.org/10.1111/j.1469-7610.2004.00358.x.Google Scholar
Hawke, J. L., Olson, R. K., Willcut, E. G., Wadsworth, S. J., & Defries, J. C. (2009). Gender ratios for reading difficulties. Dyslexia, 15, 239242. doi: http://dx.doi.org/10.1002/dys.389.Google Scholar
Ho, T. C., Sanders, S. J., Gotlib, I. H., & Hoeft, F. (2016). Intergenerational neuroimaging of human brain circuitry. Trends in Neurosciences, 39, 644648. doi: http://dx.doi.org/10.1016/j.tins.2016.08.003.Google Scholar
Hoeft, F., Hernandez, A., McMillon, G. et al. (2006). Neural basis of dyslexia: A comparison between dyslexic children and non-dyslexic children equated for reading ability. Journal of Neuroscience, 26, 1070010708. doi: http://dx.doi.org/10.1523/JNEUROSCI.4931-05.2006.Google Scholar
Hoeft, F., McCandliss, B. D., Black, J. M. et al. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 108, 361366. doi: http://dx.doi.org/10.1073/pnas.1008950108.CrossRefGoogle ScholarPubMed
Hoeft, F., Meyler, A., Hernandez, A. et al. (2007). Functional and morphometric brain dissociation between dyslexia and reading ability. Proceedings of the National Academy of Sciences of the United States of America, 104, 42344239. doi: http://dx.doi.org/10.1073/pnas.0609399104.CrossRefGoogle ScholarPubMed
Hosseini, S. M. H., Black, J. M., Soriano, T. et al. (2013). Topological properties of large-scale structural brain networks in children with familial risk for reading difficulties. NeuroImage, 71, 260274. doi: http://dx.doi.org/10.1016/j.neuroimage.2013.01.013.CrossRefGoogle ScholarPubMed
Hu, W., Lee, H. L., Zhang, Q. et al. (2010). Developmental dyslexia in Chinese and English populations: Dissociating the effect of dyslexia from language differences. Brain, 133, 16941706. doi: http://dx.doi.org/10.1093/brain/awq106.Google Scholar
Humphreys, P., Kaufmann, W. E., & Galaburda, A. M. (1990). Developmental dyslexia in women: Neuropathological findings in three patients. Annals of Neurology, 28, 727738. doi: http://dx.doi.org/10.1002/ana.410280602.Google Scholar
Jednoróg, K., Altarelli, I., Monzalvo, K. et al. (2012). The influence of socioeconomic status on children’s brain structure. PLoS One, 7(8), e42486. doi: http://dx.doi.org/10.1371/journal.pone.0042486.Google Scholar
Kapellou, O., Counsell, S. J., Kennea, N. et al. (2006). Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Medicine, 3(8), e265. doi: http://dx.doi.org/10.1371/journal.pmed.0030265.Google Scholar
Kere, J. (2011). Molecular genetics and molecular biology of dyslexia. Wiley Interdisciplinary Reviews: Cognitive Science, 2, 441448. doi: http://dx.doi.org/10.1002/wcs.138Google Scholar
Kirsten, H., Wilcke, A., Ligges, C., Boltze, J., & Ahnert, P. (2012). Association study of a functional genetic variant in KIAA0319 in German dyslexics. Psychiatric Genetics, 22, 216217. doi: http://dx.doi.org/10.1097/YPG.0b013e32834c0c97.CrossRefGoogle ScholarPubMed
Landi, N., Frost, S. J., Mencl, W. E. et al. (2013). The COMT Val/Met polymorphism is associated with reading-related skills and consistent patterns of functional neural activation. Developmental Science, 16(1), 1323. doi: http://dx.doi.org/10.1111/j.1467-7687.2012.01180.x.Google Scholar
Lawson, H. A., Cheverud, J. M., & Wolf, J. B. (2013). Genomic imprinting and parent-of-origin effects on complex traits. Nature Reviews Genetics, 14, 609617. doi: http://dx.doi.org/10.1038/nrg3543.CrossRefGoogle ScholarPubMed
Light, J. G., & DeFries, J. C. (1995). Comorbidity of reading and mathematics disabilities: Genetic and environmental etiologies. Journal of Learning Disabilities, 28, 96106. doi: http://dx.doi.org/10.1177/002221949502800204.Google Scholar
Lim, C. K. P., Ho, C. S. H., Chou, C. H. N., & Waye, M. M. Y. (2011). Association of the rs3743205 variant of DYX1C1 with dyslexia in Chinese children. Behavioral and Brain Functions, 7(1), 16. doi: http://dx.doi.org/10.1186/1744-9081-7-16.Google Scholar
Linkersdörfer, J., Lonnemann, J., Lindberg, S., Hasselhorn, M., & Fiebach, C. J. (2012). Grey matter alterations co-localize with functional abnormalities in developmental dyslexia: An ALE meta-analysis. PLoS One, 7(8), e43122. doi: http://dx.doi.org/10.1371/journal.pone.0043122.Google Scholar
Lombardo, M. V., Ashwin, E., Auyeung, B. et al. (2012). Fetal testosterone influences sexually dimorphic gray matter in the human brain. The Journal of Neuroscience, 32, 674680. doi: http://dx.doi.org/10.1523/JNEUROSCI.4389-11.2012.CrossRefGoogle ScholarPubMed
Lutchmaya, S., Baron-Cohen, S., Raggatt, P., Knickmeyer, R., & Manning, J. T. (2004). 2nd to 4th Digit ratios, fetal testosterone and estradiol. Early Human Development, 77, 2328. doi: http://dx.doi.org/10.1016/j.earlhumdev.2003.12.002.Google Scholar
Lyon, G. R., Shaywitz, S. E., & Shaywitz, B. A. (2003). A definition of dyslexia. Annals of Dyslexia, 53, 114. doi: http://dx.doi.org/10.1007/s11881-003-0001-9.CrossRefGoogle Scholar
Maisog, J. M., Einbinder, E. R., Flowers, D. L., Turkeltaub, P. E., & Eden, G. F. (2008). A meta-analysis of functional neuroimaging studies of dyslexia. Annals of the New York Academy of Sciences, 1145, 237259. doi: http://dx.doi.org/10.1196/annals.1416.024.Google Scholar
Mascheretti, S., Bureau, A., Battaglia, M. et al. (2013). An assessment of gene-by-environment interactions in developmental dyslexia-related phenotypes. Genes, Brain, and Behavior, 12, 4755. doi: http://dx.doi.org/10.1111/gbb.12000.CrossRefGoogle ScholarPubMed
Massinen, S., Tammimies, K., Tapia-Páez, I. et al. (2009). Functional interaction of DYX1C1 with estrogen receptors suggests involvement of hormonal pathways in dyslexia. Human Molecular Genetics, 18, 28022812. doi: http://dx.doi.org/10.1093/hmg/ddp215.Google Scholar
Meaburn, E. L., Harlaar, N., Craig, I. W., Schalkwyk, L. C., & Plomin, R. (2008). Quantitative trait locus association scan of early reading disability and ability using pooled DNA and 100 K SNP microarrays in a sample of 5760 children. Molecular Psychiatry, 13, 729740. doi: http://dx.doi.org/10.1038/sj.mp.4002063.Google Scholar
Meda, S. A, Gelernter, J., Gruen, J. R. et al. (2008). Polymorphism of DCDC2 reveals differences in cortical morphology of healthy individuals – A preliminary voxel based morphometry study. Brain Imaging and Behavior, 2, 2126. doi: http://dx.doi.org/10.1007/s11682-007-9012-1.CrossRefGoogle ScholarPubMed
Meng, H., Smith, S. D., Hager, K. et al. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences of the United States of America, 102, 1705317058. doi: http://dx.doi.org/10.1073/pnas.0508591102.Google Scholar
Monzalvo, K., Fluss, J., Billard, C., Dehaene, S., & Dehaene-Lambertz, G. (2012). Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status. NeuroImage, 61(1), 258274. doi: http://dx.doi.org/10.1016/j.neuroimage.2012.02.035.Google Scholar
Mott, R., Yuan, W., Kaisaki, P. et al. (2014). The architecture of parent-of-origin effects in mice. Cell, 156, 332–242. doi: http://dx.doi.org/10.1016/j.cell.2013.11.043.Google Scholar
Olson, R., Wise, B., Conners, F., Rack, J., & Fulker, D. (1989). Specific deficits in component reading and language skills: Genetic and environmental influences. Journal of Learning Disabilities, 22(6), 339348. doi: http://dx.doi.org/10.1177/002221948902200604.Google Scholar
Paracchini, S., Thomas, A., Castro, S. et al. (2006). The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Human Molecular Genetics, 15, 16591666. doi: http://dx.doi.org/10.1093/hmg/ddl089.Google Scholar
Pasley, B. N., David, S. V., Mesgarani, N. et al. (2012). Reconstructing speech from human auditory cortex. PLoS Biology, 10(1), e1001251. doi: http://dx.doi.org/10.1371/journal.pbio.1001251.CrossRefGoogle ScholarPubMed
Paulesu, E., Démonet, J. F., Fazio, F. et al. (2001). Dyslexia: Cultural diversity and biological unity. Science, 291(5511), 21652167. doi: http://dx.doi.org/10.1126/science.1057179.Google Scholar
Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101, 385413. doi: http://dx.doi.org/10.1016/j.cognition.2006.04.008.Google Scholar
Pennington, B. F., Gilger, J. W., Pauls, D. et al. (1991). Evidence for major gene transmission of developmental dyslexia. The Journal of the American Medical Association, 266, 15271534. doi: http://dx.doi.org/10.1001/jama.1991.03470110073036.CrossRefGoogle ScholarPubMed
Peschansky, V. J., Burbridge, T. J., Volz, A. J. et al. (2010). The effect of variation in expression of the candidate dyslexia susceptibility gene homolog Kiaa0319 on neuronal migration and dendritic morphology in the rat. Cerebral Cortex, 20, 884897. doi: http://dx.doi.org/10.1093/cercor/bhp154.Google Scholar
Peterson, R. L., & Pennington, B. F. (2012). Developmental dyslexia. The Lancet, 379(9830), 19972007. doi: http://dx.doi.org/10.1016/S0140-6736(12)60198-6.Google Scholar
Petrill, S. A., Deater-Deckard, K., Thompson, L. A. et al. (2007). Longitudinal genetic analysis of early reading: The Western reserve reading project. Reading and Writing, 20, 127146. doi: http://dx.doi.org/10.1007/s11145-006-9021-2.Google Scholar
Pinel, P., Fauchereau, F., Moreno, A. et al. (2012). Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered brain activation in distinct language-related regions. The Journal of Neuroscience, 32, 817825. doi: http://dx.doi.org/10.1523/JNEUROSCI.5996-10.2012.Google Scholar
Pinel, P., Lalanne, C., Bourgeron, T. et al. (2015). Genetic and environmental influences on the visual word form and fusiform face areas. Cerebral Cortex, 25, 24782493. doi: http://dx.doi.org/10.1093/cercor/bhu048.Google Scholar
Polk, T. A, Park, J., Smith, M. R., & Park, D. C. (2007). Nature versus nurture in ventral visual cortex: A functional magnetic resonance imaging study of twins. The Journal of Neuroscience, 27, 1392113925. doi: http://dx.doi.org/10.1523/JNEUROSCI.4001-07.2007.Google Scholar
Rack, J. P., Snowling, M. J., & Olson, R. K. (1992). The nonword reading deficit in developmental dyslexia: A review. Reading Research Quarterly, 27, 2953. doi: http://dx.doi.org/10.2307/747832.Google Scholar
Raizada, R. D. S., Richards, T. L., Meltzoff, A., & Kuhl, P. K. (2008). Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children. NeuroImage, 40, 13921401. doi: http://dx.doi.org/10.1016/j.neuroimage.2008.01.021.Google Scholar
Ramus, F. (2001). Dyslexia: Talk of two theories. Nature, 412, 393395. doi: http://dx.doi.org/10.1038/35086683.Google Scholar
Ramus, F. (2003). Developmental dyslexia: Specific phonological deficit or general sensorimotor dysfunction? Current Opinion in Neurobiology, 13, 212218. doi: http://dx.doi.org/10.1016/S0959-4388(03)00035-7.Google Scholar
Raschle, N. M., Chang, M., & Gaab, N. (2011). Structural brain alterations associated with dyslexia predate reading onset. NeuroImage, 57, 742749. doi: http://dx.doi.org/10.1016/j.neuroimage.2010.09.055.CrossRefGoogle ScholarPubMed
Raschle, N. M., Zuk, J., & Gaab, N. (2012). Functional characteristics of developmental dyslexia in left-hemispheric posterior brain regions predate reading onset. Proceedings of the National Academy of Sciences of the United States of America, 109, 21562161. doi: http://dx.doi.org/10.1073/pnas.1107721109.Google Scholar
Ravizza, S. M., Delgado, M. R., Chein, J. M., Becker, J. T., & Fiez, J. A. (2004). Functional dissociations within the inferior parietal cortex in verbal working memory. NeuroImage, 22, 562573. doi: http://dx.doi.org/10.1016/j.neuroimage.2004.01.039.Google Scholar
Rende, R., & Plomin, R. (1992). Diathesis-stress models of psychopathology: A quantitative genetic perspective. Applied and Preventive Psychology, 1, 177182. doi: http://dx.doi.org/10.1016/S0962-1849(05)80123-4.Google Scholar
Richlan, F., Kronbichler, M., & Wimmer, H. (2009). Functional abnormalities in the dyslexic brain: A quantitative meta-analysis of neuroimaging studies. Human Brain Mapping, 30, 32993308. doi: http://dx.doi.org/10.1002/hbm.20752.Google Scholar
Richlan, F., Kronbichler, M., & Wimmer, H. (2011). Meta-analyzing brain dysfunctions in dyslexic children and adults. NeuroImage, 56, 17351742. doi: http://dx.doi.org/10.1016/j.neuroimage.2011.02.040.Google Scholar
Richlan, F., Kronbichler, M., & Wimmer, H. (2013). Structural abnormalities in the dyslexic brain: A meta-analysis of voxel-based morphometry studies. Human Brain Mapping, 34, 30553065. doi: http://dx.doi.org/10.1002/hbm.22127.Google Scholar
Rueckl, J. G., Paz-Alonso, P. M., Molfese, P. J. et al. (2015). Universal brain signature of proficient reading: Evidence from four contrasting languages. Proceedings of the National Academy of Sciences, 112(50), 1551015515. doi: http://dx.doi.org/10.1073/pnas.1509321112.Google Scholar
Scerri, T. S., Darki, F., Newbury, D. F. et al. (2012). The dyslexia candidate locus on 2p12 is associated with general cognitive ability and white matter structure. PLoS One, 7(11), e50321. doi: http://dx.doi.org/10.1371/journal.pone.0050321.Google Scholar
Scerri, T. S., & Schulte-Körne, G. (2010). Genetics of developmental dyslexia. European Child & Adolescent Psychiatry, 19, 179197. doi: http://dx.doi.org/10.1007/s00787-009-0081-0.Google Scholar
Schulte-Körne, G. (2010). The prevention, diagnosis, and treatment of dyslexia. Deutsches Ärzteblatt International, 107, 718726. doi: http://dx.doi.org/10.3238/arztebl.2010.0718.Google Scholar
Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R. et al. (1995). Sex differences in the functional organization of the brain for language. Nature, 373, 607609. doi: http://dx.doi.org/10.1038/373607a0.Google Scholar
Silani, G., Frith, U., Demonet, J.-F. et al. (2005). Brain abnormalities underlying altered activation in dyslexia: A voxel based morphometry study. Brain, 128, 24532461. doi: http://dx.doi.org/10.1093/brain/awh579.Google Scholar
Smith, S. D. (2011). Approach to epigenetic analysis in language disorders. Journal of Neurodevelopmental Disorders, 3(4), 356364. doi: http://dx.doi.org/10.1007/s11689-011-9099-y.Google Scholar
Stevenson, J., Graham, P., Fredman, G., & McLoughli, V. (1987). A twin study of genetic influences on reading and spelling ability and disability. Journal of Child Psychology and Psychiatry, 28(2), 229247. doi: http://dx.doi.org/10.1111/j.1469-7610.1987.tb00207.x.Google Scholar
Swagerman, S. C., van Bergen, E., Dolan, C. et al. (2015). Genetic transmission of reading ability. Brain and Language, 172, 38. doi: http://dx.doi.org/10.1016/j.bandl.2015.07.008.Google Scholar
Szalkowski, C. E., Fiondella, C. F., Truong, D. T. et al. (2013). The effects of Kiaa0319 knockdown on cortical and subcortical anatomy in male rats. International Journal of Developmental Neuroscience, 31(2), 116122. doi: http://dx.doi.org/10.1016/j.ijdevneu.2012.11.008.Google Scholar
Tammimies, K., Tapia-Páez, I., Rüegg, J. et al. (2012). The rs3743205 SNP is important for the regulation of the dyslexia candidate gene DYX1C1 by estrogen receptor β and DNA methylation. Molecular Endocrinology, 26, 619629. doi: http://dx.doi.org/10.1210/me.2011-1376.Google Scholar
Tammimies, K., Vitezic, M., Matsson, H. et al. (2013). Molecular networks of DYX1C1 gene show connection to neuronal migration genes and cytoskeletal proteins. Biological Psychiatry, 73, 583590. doi: http://dx.doi.org/10.1016/j.biopsych.2012.08.012.Google Scholar
Torppa, M., Eklund, K., van Bergen, E., & Lyytinen, H. (2011). Parental literacy predicts children’s literacy: A longitudinal family-risk study. Dyslexia, 17, 339355. doi: http://dx.doi.org/10.1002/dys.437.CrossRefGoogle ScholarPubMed
van Bergen, E., de Jong, P. F., Regtvoort, A. et al. (2011). Dutch children at family risk of dyslexia: Precursors, reading development, and parental effects. Dyslexia, 17, 218. doi: http://dx.doi.org/10.1002/dys.423.Google Scholar
van Bergen, E., van der Leij, A., & de Jong, P. F. (2014). The intergenerational multiple deficit model and the case of dyslexia. Frontiers in Human Neuroscience, 8(346). doi: http://dx.doi.org/10.3389/fnhum.2014.00346.Google Scholar
van der Mark, S., Bucher, K., Maurer, U. et al. (2009). Children with dyslexia lack multiple specializations along the visual word-form (VWF) system. NeuroImage, 47, 1940–1949. doi: http://dx.doi.org/10.1016/j.neuroimage.2009.05.021.Google Scholar
van Vliet, J., Oates, N. A., & Whitelaw, E. (2007). Epigenetic mechanisms in the context of complex diseases. Cellular and Molecular Life Sciences, 64, 15311538. doi: http://dx.doi.org/10.1007/s00018-007-6526-z.CrossRefGoogle ScholarPubMed
Vandermosten, M., Boets, B., Wouters, J., & Ghesquière, P. (2012). A qualitative and quantitative review of diffusion tensor imaging studies in reading and dyslexia. Neuroscience and Biobehavioral Reviews, 36, 15321552. doi: http://dx.doi.org/10.1016/j.neubiorev.2012.04.002.Google Scholar
Vandermosten, M., Hoeft, F., & Norton, E. S. (2016). Integrating MRI brain imaging studies of pre-reading children with current theories of developmental dyslexia: A review and quantitative meta-analysis. Current Opinion in Behavioral Science, 10, 155161. doi: http://dx.doi.org/10.1016/j.cobeha.2016.06.007.Google Scholar
Vinckier, F., Dehaene, S., Jobert, A. et al. (2007). Hierarchical coding of letter strings in the ventral stream: Dissecting the inner organization of the visual word-form system. Neuron, 55, 143156. doi: http://dx.doi.org/10.1016/j.neuron.2007.05.031.Google Scholar
Wang, Y., Paramasivam, M., Thomas, A. et al. (2006). DYX1C1 functions in neuronal migration in developing neocortex. Neuroscience, 143, 515–22. doi: http://dx.doi.org/10.1016/j.neuroscience.2006.08.022.Google Scholar
Xia, Z., Hoeft, F., Zhang, L., & Shu, H. (2016). Neuroanatomical anomalies of dyslexia: Disambiguating the effects of disorder, performance, and maturation. Neuropsychologia, 81, 6878. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2015.12.003.CrossRefGoogle ScholarPubMed
Yamagata, B., Murayama, K., Black, J. M. et al. (2016). Female-specific intergenerational transmission patterns of the human corticolimbic circuitry. Journal of Neuroscience, 36, 12541260. doi: http://dx.doi.org/10.1523/JNEUROSCI.4974-14.2016.Google Scholar
Yeargin-Allsopp, M., Rice, C., Karapurkar, T., Boyle, C., & Murphy, C. (2003). Prevalence of autism in a US metropolitan area. The Journal of the American Medical Association, 289, 4955.Google Scholar
Yoncheva, Y. N., Zevin, J. D., Maurer, U., & McCandliss, B. D. (2010). Auditory selective attention to speech modulates activity in the visual word form area. Cerebral Cortex, 20, 622632. doi: http://dx.doi.org/10.1093/cercor/bhp129.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×