Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-04-30T20:10:33.328Z Has data issue: false hasContentIssue false

Section 5 - Gynecologic Oncology

Published online by Cambridge University Press:  01 February 2018

Lisa Keder
Affiliation:
Ohio State University
Martin E. Olsen
Affiliation:
East Tennessee State University
Get access
Type
Chapter
Information
Gynecologic Care , pp. 263 - 370
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Risks of developing or dying from cancer 2016. www.cancer.orgGoogle Scholar
Pfister, D.G. Importance of economic evaluation in oncology: new economic challenges in oncology practice. World Health Cont Med Edu. 1997;25.Google Scholar
Skipper, H.E., Schabel, F.M., Mullett, L.B. Implications of biochemical, cytokinetic, pharmacologic, and toxicologic relationships in the design of optimal therapeutic schedules. Cancer Chemother Rep. 1950;54:431–50.Google Scholar
Johnson, S.W., Hamilton, T.C., Ozols, R.F. Mechanisms of drug resistance in ovarian cancer. Cancer. 1993;71:644–9.Google ScholarPubMed
Rosenberg, B., VanCamp, L., Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature. 1965;205:698–9.CrossRefGoogle ScholarPubMed
Rosenberg, B., VanCamp, L., Trosko, J. E., Mansour, V. H. Platinum compounds: a new class of potent antitumour agents. Nature. 1969;222:385–6.CrossRefGoogle ScholarPubMed
Kelland, L. The resurgence of platinum-based cancer chemotherapy. www.medscape.com/viewarticle/563882. Accessed August 12, 2016.Google Scholar
Dasari, S., Tchounwou, P. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014:364–78.Google Scholar
Barry, M., Behnke, C., Eastman, A. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem Pharmacol. 1990;40:2353–62.CrossRefGoogle ScholarPubMed
Miller, R., Tadagavadi, R., Ramesh, G., Reeves, W. Mechanisms of cisplatin nephrotoxicity. Toxins. 2010;11:2490–18.Google Scholar
Natarajan, G., Malathi, R., Holler, E. Increased DNA-binding activity of cis-1,1-cyclobutanedicarboxylatodiammineplatinum(II) (carboplatin) in the presence of nucleophiles and human breast cancer MCF-7 cell cytoplasmic extracts: activation theory revisited. Biochem.Pharmacol. 1999;58:1625–9.Google Scholar
Canetta, R., Rozencweig, M., Carter, S.K. Carboplatin: the clinical spectrum to date. Cancer Treat Rev. 1985;12(Suppl A):125–36.CrossRefGoogle ScholarPubMed
Go, S., Adjei, A. Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol. 1999;17:409–2.Google Scholar
Chemotherapy for advanced ovarian cancer. Advanced Ovarian Cancer Trialists Group. Cochrane Database Syst. 2000:CD001418.Google Scholar
Neijt, J.P., Engelholm, S.A., Tuxen, M.K. et al. Exploratory Phase III study of paclitaxel and cisplatin vs paclitaxel and carboplatin in advanced ovarian cancer. J. Clin. Oncol. 2000;18:3084–92.Google Scholar
Ozols, R.F., Bundy, B.N., Greer, B.E. et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J. Clin. Oncol. 2003;21:31943200.CrossRefGoogle ScholarPubMed
Richmond, R.C. Toxic variability and radiation sensitization by dichlorodiammineplatinum(II) complexes in Salmonella typhimurium cells. Radiat Res. 1984;99:596–60.Google Scholar
Amorino, G.P. et al. Radiopotentiation by the oral platinum agent, JM216: role of repair inhibition. Int J Radiat Oncol Biol Phys. 1999;44:399405.Google Scholar
Maggi, R., Lissoni, A., Spina, F. et al. Adjuvant chemotherapy vs radiotherapy in high-risk endometrial carcinoma: results of a randomized trial. Br J Cancer. 2006;95:266–71.Google Scholar
Bryan, J. How bark from the Pacific yew tree improved the treatment of breast cancer. Phar J. (2011).Google Scholar
Abal, M., Andreu, J.M., Barasoain, I. Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Targets. 3:193203.Google Scholar
McGuire, W.P., Hoskins, W.J., Brady, W.F. et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N. Engl. J. Med. 1996;334:16.Google Scholar
Rowinsky, E., Eisenhauer, E., Chaudhry, V., Arbuck, S., Donehower, R. Clinical toxicities encountered with paclitaxel (Taxol). Semin Oncol. 1993;20(4 Suppl 3):115.Google Scholar
Scripture, C.D., Figg, W.D., Sparreboom, A. Peripheral neuropathy induced by paclitaxel: recent insights and future perspectives. Curr Neuropharmacol. 2006;4(2):165–72.Google Scholar
Markman, M., Kennedy, A., Webster, K. et al. Combination chemotherapy with carboplatin and docetaxel in the treatment of cancers of the ovary and fallopian tube and primary carcinoma of the peritoneum. J. Clin. Oncol. 2001.19:1901–5.Google Scholar
Thorn, C., Oshiro, C., Marsh, S. et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011.21(7):440–6.CrossRefGoogle ScholarPubMed
Chlebowki, R., Adriamycin (doxorubicin) cardiotoxicity: a review. West J Med. 1979 Nov;131(5):364–8.Google Scholar
Rafiyath, S., Rasul, M., Lee, B., Wei, G., Lamba, G., Liu, D. Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis. Exp Hematol Oncol. 2012 Apr 23;1(1):10.CrossRefGoogle ScholarPubMed
Homesley, H., Bundy, B., Hurteau, J., Roth, L. Bleomycin, etoposide, and cisplatin combination therapy of ovarian granulosa cell tumors and other stromal malignancies: A Gynecologic Oncology Group study. Gynecol Oncol. 1999 Feb;72(2):131–7.Google Scholar
Jules-Elysee, K., White, D. Bleomycin-induced pulmonary toxicity. Clin Chest Med. 1990;11(1):1.Google Scholar
Plunkett, W., Huang, P., Xu, Y.Z., Heinemann, V., Grunewald, R., Gandhi, V. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol. 1995 Aug;22(4 Suppl 11):310.Google Scholar
Hansen, S. Gemcitabine in the treatment of ovarian cancer. Int J Gynecol Cancer. 2001;11(Suppl 1):3941.Google Scholar
Treon, S., Chabner, B. Concepts in use of high-dose methotrexate therapy. Clin Chem. 1996;42(8 Pt 2):1322.CrossRefGoogle ScholarPubMed
Musa, F., Blank, S., Muggia, F. A pharmacokinetic evaluation of topotecan as a cervical cancer therapy. Expert Opin Drug Metab Toxicol. 2013 Feb;9(2):215–24.Google Scholar
Coleman, R., Miller, D. Topotecan in the treatment of gynecologic cancer. Semin Oncol. 1997 Dec;24(6 Suppl 20):S20-55–63.Google ScholarPubMed
Long, H.J., Bundy, B.N., Grendys, E.C. et al. Randomized phase III trial of cisplatin with or without topotecan in carcinoma of the uterine cervix: a Gynecologic Oncology Group study. J Clin Oncol. 2005;23:4626–33.CrossRefGoogle ScholarPubMed
Burger, R., Brady, M., Bookman, M. et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011 Dec 29;365(26):2473–83.Google Scholar
Tewari, K., Sill, M., Long, H. et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med. 2014 Feb 20;370(8):734–43.Google Scholar

References

Basic principles in gynecologic radiation therapy. In: DiSaia, PJ, Creasman, WT eds. Clinical Gynecologic Oncology, 8th ed. Philadephis: Mosby, 2012.Google Scholar
Martin, DD. Review of radiation therapy in the pregnant cancer patient. Clin Obstet Gynecol 2011 Dec;54(4):591601.CrossRefGoogle ScholarPubMed
Laughlin, J. Development of the technology of radiation therapy. Radiographics 1989;9(6):1245–6.Google Scholar
Vicens, RA, Rodriguez, J, Sheplan, L, Mayo, C III, Mayo, L, Jensen, C. Brachytherapy in pelvic malignancies: a review for radiologists. Abdom Imaging 2015 Oct;40(7):2645–59.Google Scholar
Cancer facts and figures. 2014 Supplemental Data. Estimated 2014 New Cancer Cases by Site, Sex, & Age. American Cancer Society. www.cancer.org/research/cancerfactsstatistics/index Accessed August 26, 2016.Google Scholar
Tang, J, Tang, Y, Yang, J, Huang, S. Chemoradiation and adjuvant chemotherapy in advanced cervical adenocarcinoma. Gynecol Oncol 2012 May;125(2):297302.CrossRefGoogle ScholarPubMed
Lanciano, RM, Martz, K, Coia, LR, Hanks, GE. Tumor and treatment factors improving outcome in stage III-B cervix cancer. Int J Radiat Oncol Biol Phys 1991;20:95100.CrossRefGoogle ScholarPubMed
ACOG. Practice Bulletin No. 35: Diagnosis and treatment of cervical carcinomas. Inter J Gyn & Obst 2002 May;78:7991.Google Scholar
Chao, A, Lin, CT, Lai, CH. Updates in systemic treatment for metastatic cervical cancer. Curr Treat Options Onc 2014;15:113.CrossRefGoogle ScholarPubMed
Trifiletti, DM, Swisher-McClure, S, Showalter, TN, Hegarty, SE, Grover, S. Postoperative chemoradiation therapy in high-risk cervical cancer: re-evaluating the findings of gynecologic oncology group study 109 in a large, population-based cohort. In J Radiation Oncol Biol Phys 2015 93(5):1032–44.CrossRefGoogle Scholar
ACOG. Practice Bulletin No.149: Endometrial Cancer. American College of Obstetricians and Gynecologists. Obstet Gyn 2015 Apr;125(4):1006–26.Google Scholar
del Carmen, MG, Eisner, B, Willet, CG, Fuller, AF. Intraoperative radiation therapy in the management of gynecologic and genitourinary malignancies. Surg Oncol Clin N Am 2003 Oct;12(4):1031–42.Google Scholar
Giuntoli, RL,Metzinger, DS, DiMarco, CS, Cha, SS, Sloan, JA, Keeney, GL, Gostout, BS. Retrospective review of 208 patients with leiomyosarcoma of the uterus: prognostic indicators, surgical management, and adjuvant therapy. Gyn Onc 2003 Jun;89(3):460–9.Google Scholar
Foley, OW, Rauh-Hain, JA, Clemmer, J, Clark, RM, Hall, T, Diver, EJ et al. Trends in the treatment of uterine leiomyosarcoma in the medicare population. Int J Gynecol Cancer 2015 Mar 25(3):453–58.Google Scholar
Sharma, DN. Radiation in vulvar cancer. Curr Opin Obstet Gynecol 2012 Feb;24(1):2430.Google Scholar
Lonn, S, Gilbert, ES, Ron, E, Smith, SA, Stovall, M, Curtis, RE. Comparison of second cancer risks from brachytherapy and external beam therapy after uterine corpus cancer. Cancer Epidemiol Biomar Prev 2010 Feb;19(2): 464–74.CrossRefGoogle ScholarPubMed
Stanic, S, Mayadev, JS. Tolerance of the small bowel to therapeutic irradiation: a focus on late toxicity in patients receiving para-aortic nodal irradiation for gynecologic malignancies. Int J Gynecol Cancer 2013 May;23(4):592–7.Google Scholar
Huffman, LB, Hartenbach, EM, Carter, J, Rash, JK, Kushner, DM. Maintaining sexual health throughout gynecologic cancer survivorship: a comprehensive review and clinical guide. Gynecol Oncol 2016 Feb;140(2):359–68.Google Scholar
Foley, OW, Rauh-Hain, JA, del Carmen, MG. The role of intraoperative radiation therapy in the management of recurrent and locally advanced gynecologic cancers. Int J Gynecol Cancer 2013 Jan;23(1):915.Google Scholar
Foley, OW, Rauh-Hain, JA, Clark, RM, Goodman, A, Growdon, WB, Boruta, DM et al. Intraoperative radiation therapy in the management of gynecologic malignancies. Am J Clin Oncol 2016 Aug;39(4):329–34.Google Scholar
Bennett, MH, Feldmeier, J, Smee, R, Milross, C. Hyperbaric oxygenation for tumour sensitisation to radiotherapy. Cochrane Database Syst Rev 2012 Apr; 18(4):CD005007.Google Scholar
Franchena, M, van der Zee, J. Use of combined radiation and hyperthermia for gynecological cancer. Curr Opin Obstet Gynecol 2010 Feb;22(1):914.Google Scholar
Kunos, CA, Spelic, M. Role of stereotactic radiosurgery in gynecologic cancer. Curr Opin Oncol 2013 Sep;25(5):532–8.Google Scholar

References

American Cancer Society. Cervical cancer: what is cervical cancer? 2015. www.cancer.org/cancer/cervicalcancer/detailedguide/cervical-cancer-key-statistics. (Accessed December 4, 2015.)Google Scholar
Bosch, FX, de Sanjose, S. Human papillomavirus and cervical cancer; burden and assessment of causality. J Natl Cancer Inst Monogr 2003; 31: 313.Google Scholar
Scheffner, M, Werness, BA, Huibregtse, JM et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63(6): 1129–36.CrossRefGoogle ScholarPubMed
Jones, RE, Wegrzyn, RJ, Patrick, DR et al. Identification of HPV-16 peptides that are potent antagonists of E7 binding to the retinoblastoma suppressor protein. J Biol Chem 1990; 154(22): 12782–5.Google Scholar
Castellsague, X, Munoz, N. Cofactors in human papillomavirus carcinogenesis: role of parity, oral contraceptives, and tobacco smoking. J Natl Cancer Inst Monogr 2003; 31: 20–8.Google Scholar
Louie, KS, Castellsaque, X, de Santiago, S et al. Smoking and passive smoking in cervical cancer risk: pooled analysis of couples from the IARC multicentric case-control studies. Cancer Epidemiol Biomarkers Prev 2011; 20(7): 1379–90.Google Scholar
McCann, MF, Irwin, DE, Walton, LA et al. Nicotine and cotinine in the cervical mucous of smokers, passive smokers, and nonsmokers. Cancer Epidemiol Biomarkers Prev 1992; 1(2): 125–9.Google Scholar
Smith, JS, Green, J, Berrington de Gonzalez, A et al. Cervical cancer and use of hormonal contraceptives: a systematic review. Lancet 2003; 361(9364): 1159–67.Google Scholar
Castle, PE. Beyond human papillomavirus: the cervix, exogenous secondary factors, and the development of cervical precancer and cancer. J Low Genit Tract Dis 2004; 8(3): 224–30.Google Scholar
Lehtovirta, P, Finne, P, Nieminen, P et al. Prevalence and risk factors of squamous intraepithelial lesions of the cervix among HIV-infected women: a long-term follow-up study in a low-prevalence population. Int J STD AIDS 2006; 17(12): 831–4.Google Scholar
Anttila, T, Saikku, P, Koskela, P et al. Serotypes of Chlamydia trachomatis and risk for development of cervical squamous cell carcinoma. JAMA 2001; 285(1): 4751.Google Scholar
Nanda, K, McCrory, DC, Myers, ER et al. Accuracy of the Papanicolaou test in screening for and follow-up of cervical cytologic abnormalities: a systematic review. Ann Intern Med 2000; 132(10): 810–9.Google Scholar
McCredie, MR, Sharples, KJ, Pual, C et al. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: a retrospective cohort study. Lancet Oncol 2008; 9: 425–34.CrossRefGoogle ScholarPubMed
Saslow, D, Solomon, D, Lawson, HW et al. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. ACS-ASCCO-ASCP Cervical Cancer Guideline Committee. CA Cancer J Clin 2012; 62: 147–72.Google Scholar
Huh, WK, Ault, KA, Chelmow, D et al. Use of primary high-risk human papillomavirus testing for cervical cancer screening: interim clinical guidance. Obstet Gynecol 2015; 125: 330–7.Google Scholar
Petrosky, E, Bocchini, JA Jr, Hariri, S et al. Use of the 9-valent human papillomavirus (HPV) vaccine: updated HPV vaccination recommendations of the advisory committee on immunization practices. Centers for Disease Control and Prevention (CDC). MMWR Morb Mortal Wkly Rep 2015; 64: 300304.Google Scholar
Human papillomavirus vaccination. Committee Opinion No. 641. American College of Obstetricians and Gynecologists. Obstet Gynecol 2015; 126: e38–43.Google Scholar
Centers for Disease Control. HPV vaccines: vaccinating your teen or preteen. www.cdc.gov/hpv/parents/vaccine.html. (Accessed February 17, 2016.)Google Scholar
Alfsen, GC, Kristensen, GB, Skovlund, E et al. Histologic subtype has minor importance for overall survival in patients with adenocarcinoma of the uterine cervix: a population-based study of prognostic factors in 505 patients with nonsquamous cell carcinomas of the cervix. Cancer 2001; 92(9): 2471–83.Google Scholar
Grigsby, PW, Perez, CA, Kuske, RR et al. Adenocarcinoma of the uterine cervix: lack of evidence for a poor prognosis. Radiother Oncol 1988; 12(4): 289–96.Google Scholar
Kilgore, LC, Soong, SJ, Gore, H et al. Analysis of prognostic features in adenocarcinoma of the cervix. Gynecol Oncol 1988; 31(1): 137–53.Google Scholar
Lee, KB, Lee, JM, Park, Cy et al. What is the difference between squamous cell carcinoma and adenocarcinoma of the cervix? A matched case-control study. Int J Gynecol Cancer 2006; 16(4): 1569–73.CrossRefGoogle ScholarPubMed
Davy, ML, Dodd, TJ, Luke, CG et al. Cervical cancer: effect of glandular cell type on prognosis, treatment, and survival. Obstet Gynecol 2003; 101(1): 3845.Google Scholar
Eifel, PJ, Burke, TW, Morris, M et al. Adenocarcinoma as an independent risk factor for disease recurrence in patients with stage IB cervical carcinoma. Gynecol Oncol 1995; 59(1): 3844.Google Scholar
Eifel, PJ, Morris, M, Oswald, MJ et al. Adenocarcinoma of the uterine cervix: prognosis and patterns of failure in 367 cases. Cancer 1990; 65(11): 2507–14.Google Scholar
Hopkins, MP, Morley, GW. A comparison of adenocarcinoma and squamous cell carcinoma of the cervix. Obstet Gynecol 1991; 77(6): 912–7.Google Scholar
Lai, CH, Hsueh, S, Hong, JH et al. Are adenocarcinomas and adenosquamous carcinomas different from squamous carcinomas in stage IB and II cervical cancer patients undergoing primary radical surgery? Int J Gynecol Cancer 1999; 9(1): 2836.Google Scholar
Lee, YY, Choi, CH, Kim, TJ et al. A comparison of pure adenocarcinoma and squamous cell carcinoma of the cervix after radical hysterectomy in stage IB-IIA. Gynecol Oncol 2011; 120(3): 439–43.Google Scholar
Macdonald, OK, Chen, J, Dodson, M et al. Prognostic significance of histology and positive lymph node involvement following radical hysterectomy in carcinoma of the cervix. Am J Clin Oncol 2009; 32(4): 411–6.Google Scholar
Massad, LS, Einstein, MH, Huh, WK et al. 2012 updated consensus guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. 2012 ASCCP Consensus Guidelines Conference. J Low Genit Tract Dis 2013; 17: S1–27.Google Scholar
Quinn, MA, Benedet, JL, Odicino, F et al. Carcinoma of the cervix. FIGO 26th annual report on the results of treatment in gynecologic cancer. Int J Gynaecol Obstet 2006; 95 Suppl 1: S43.Google Scholar
Benedet, JL, Bender, H, Jones, H III et al. FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. FIGO Committee on Gynecologic Oncology. Int J Gynaecol Obstet 2000; 70(2): 209–62.Google Scholar
Ostor, AG, Rome, RM. Micro-invasive squamous cell carcinoma of the cervix: a clinico-pathologic study of 200 cases with long-term follow-up. Int J Gynecol Cancer 1994; 4(4): 257–64.Google Scholar
Sedlis, A, Bundy, BN, Rotman, MZ et al. A randomized trial of pelvic radiation therapy versus no further therapy in selected patients with FIGO stage IB carcinoma of the cervix after radical hysterectomy and pelvic lymphadenectomy: a Gynecologic Oncology Group study. Gynecol Oncol 1999; 73(2): 177–83.Google Scholar
Peters, WA III, Liu, PY, Barrett, RJ II et al. Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol 2000; 18(8): 1606–13.Google Scholar
Milliken, DA, Shepherd, JH. Fertility preserving surgery for carcinoma of the cervix. Curr Opin Oncol 2008; 20(5): 575–80.Google Scholar
Landoni, F, Maneo, A, Colombo, A et al. Randomised study of radical surgery versus radiotherapy for stage IB-IIA cervical cancer. Lancet 1997; 350(9077): 535–40.Google Scholar
Sutton, GP, Bundy, BN, Delgado, G et al. Ovarian metastases in stage IB carcinoma of the cervix: a Gynecologic Oncology Group study. Am J Obstet Gynecol 1992; 166(1 Pt 1): 50–3.Google Scholar
Rose, PG, Bundy, BN, Watkins, EB et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med 1999; 340: 1144–53.Google Scholar
Whitney, CW, Sause, W, Bundy, BN et al. Randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as an adjunct to radiation therapy in stage IIB-IVA carcinoma of the cervix with negative para-aortic lymph nodes: a Gynecologic Oncology Group and Southwest Oncology Group study. J Clin Oncol 1999; 17(5): 1339–48.Google Scholar
Tewari, KS, Sill, MW, Long, HJ III et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med 2014; 370: 734–43.Google Scholar

References

American Cancer Society. Cancer Facts and Figures. 2015.Google Scholar
Akhtar-Danesh, N., Elit, L., and Lytwyn, A., Trends in incidence and survival of women with invasive vulvar cancer in the United States and Canada: a population-based study. Gynecol Oncol, 2014. 134(2): p. 314–18.Google Scholar
Messing, M. J. and , D. G. Gallup, Carcinoma of the vulva in young women. Obstet Gynecol, 1995. 86(1): p. 51–4.CrossRefGoogle ScholarPubMed
Lanneau, G. S. et al., Vulvar cancer in young women: demographic features and outcome evaluation. Am J Obstet Gynecol, 2009. 200(6): p. 645 e1–5.CrossRefGoogle ScholarPubMed
Bloss, J. D. et al., Clinical and histologic features of vulvar carcinomas analyzed for human papillomavirus status: evidence that squamous cell carcinoma of the vulva has more than one etiology. Hum Pathol, 1991. 22(7): p. 711–18.Google Scholar
Trimble, C. L. et al., Heterogeneous etiology of squamous carcinoma of the vulva. Obstet Gynecol, 1996. 87(1): p. 5964.Google Scholar
Kaufman, R. H., Intraepithelial neoplasia of the vulva. Gynecol Oncol, 1995. 56(1): p. 821.Google Scholar
Hording, U. et al., Vulvar squamous cell carcinoma and papillomaviruses: indications for two different etiologies. Gynecol Oncol, 1994. 52(2): p. 241–6.Google Scholar
Deppe, G., Mert, I., and Winer, I. S., Management of squamous cell vulvar cancer: a review. J Obstet Gynaecol Res, 2014. 40(5): p. 1217–25.Google Scholar
Duong, T. H. and Flowers, L. C., Vulvo-vaginal cancers: risks, evaluation, prevention and early detection. Obstet Gynecol Clin North Am, 2007. 34(4): p. 783–802, x.Google Scholar
van de Nieuwenhof, H. P. et al., Differentiated vulvar intraepithelial neoplasia is often found in lesions, previously diagnosed as lichen sclerosus, which have progressed to vulvar squamous cell carcinoma. Mod Pathol, 2011. 24(2): p. 297305.Google Scholar
van der Avoort, I. A. et al., Vulvar squamous cell carcinoma is a multifactorial disease following two separate and independent pathways. Int J Gynecol Pathol, 2006. 25(1): p. 22–9.Google Scholar
Kurman, R. J., Toki, T., and Schiffman, M. H., Basaloid and warty carcinomas of the vulva. Distinctive types of squamous cell carcinoma frequently associated with human papillomaviruses. Am J Surg Pathol, 1993. 17(2): p. 133–45.Google Scholar
van de Nieuwenhof, H. P. et al., The etiologic role of HPV in vulvar squamous cell carcinoma fine tuned. Cancer Epidemiol Biomarkers Prev, 2009. 18(7): p. 2061–7.Google Scholar
Basta, A., Adamek, K., and Pitynski, K., Intraepithelial neoplasia and early stage vulvar cancer. Epidemiological, clinical and virological observations. Eur J Gynaecol Oncol, 1999. 20(2): p. 111–14.Google Scholar
Wilkinson, E. J. and Stone, I. K., Wilkinson and Stone: Atlas of Vulvar Disease, 3rd ed. Philadelphia: Wolters Kluwer, Lippincott Williams & Wilkins; 2012.Google Scholar
Moore, D. H. K., cGuire, M WJ. Vulva. In: Hoskins, W, Perez, C. A, Young, R. C et al., eds. Principles and Practice of Gynecologic Oncology, 4th ed. Philadelphia. Lippincott Williams & Wilkins; 2005, pp. 665705.Google Scholar
Homesley, H. D. et al., Assessment of current International Federation of Gynecology and Obstetrics staging of vulvar carcinoma relative to prognostic factors for survival: a Gynecologic Oncology Group study. Am J Obstet Gynecol, 1991. 164(4): p. 9971003 (1003–4).Google Scholar
Husseinzadeh, N. et al., The significance of histologic findings in predicting nodal metastases in invasive squamous cell carcinoma of the vulva. Gynecol Oncol, 1983. 16(1): p. 105–11.Google Scholar
Leonard, B. et al., A clinical and pathological overview of vulvar condyloma acuminatum, intraepithelial neoplasia, and squamous cell carcinoma. Biomed Res Int, 2014. 2014: p. 480573.Google Scholar
American Joint Committee on Cancer, AJCC cancer staging handbook. In: AJCC Cancer Staging Manual, 7th ed. New York: Springer; 2010. pp. 463–7.Google Scholar
Janco, J. M. et al., Vulvar and vaginal melanoma: case series and review of current management options including neoadjuvant chemotherapy. Gynecol Oncol, 2013. 129(3): p. 533–7.Google Scholar
Benda, J. A., Platz, C. E., and Anderson, B., Malignant melanoma of the vulva: a clinical-pathologic review of 16 cases. Int J Gynecol Pathol, 1986. 5(3): p. 202–16.Google Scholar
Gehrig, PA, Alvarez Secord, A. Gynecologic Oncology. Austin: Vademecum, 2009.Google Scholar
Ragnarsson-Olding, B. K. et al., Malignant melanoma of the vulva in a nationwide, 25-year study of 219 Swedish females: clinical observations and histopathologic features. Cancer, 1999. 86(7): p. 1273–84.Google Scholar
Barakat, RR, Berchuck, A, Markman, M, Randall, ME. Principles of Gynecologic Oncology, 6th ed. Philadelphia: Lippincott Williams & Wilkins, 2013.Google Scholar
Valsecchi, M. E. et al., Lymphatic mapping and sentinel lymph node biopsy in patients with melanoma: a meta-analysis. J Clin Oncol, 2011. 29(11): p. 1479–87.Google Scholar
Suwandinata, F. S. et al., Management of vulvar melanoma and review of the literature. Eur J Gynaecol Oncol, 2007. 28(3): p. 220–4.Google Scholar
Moxley, K. M. et al., Malignant melanoma of the vulva: an extension of cutaneous melanoma? Gynecol Oncol, 2011. 122(3): p. 612–7.Google Scholar
Phillips, G. L. et al., Malignant melanoma of the vulva treated by radical hemivulvectomy: a Gynecologic Oncology Group study. Cancer, 1994. 73(10): p. 2626–32.Google Scholar
Verschraegen, C. F. et al., Vulvar melanoma at the M. D. Anderson Cancer Center: 25 years later. Int J Gynecol Cancer, 2001. 11(5): p. 359–64.Google Scholar
Piura, B. et al., Malignant melanoma of the vulva: a clinicopathologic study of 18 cases. J Surg Oncol, 1992. 50(4): p. 234–40.Google Scholar
Piura, B., Rabinovich, A., and Dgani, R., Malignant melanoma of the vulva: report of six cases and review of the literature. Eur J Gynaecol Oncol, 1999. 20(3): p. 182–6.Google Scholar
Chang, A. E., Karnell, L. H., and Menck, H. R., The National Cancer Data Base report on cutaneous and noncutaneous melanoma: a summary of 84,836 cases from the past decade. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer, 1998. 83(8): p. 1664–78.Google Scholar
Piura, B., Management of primary melanoma of the female urogenital tract. Lancet Oncol, 2008. 9(10): p. 973–81.Google Scholar
Leuchter, R. S. et al., Primary carcinoma of the Bartholin gland: a report of 14 cases and review of the literature. Obstet Gynecol, 1982. 60(3): p. 361–8.Google Scholar
Creasman, W. T., Gallager, H. S., Rutledge, F., Paget’s disease of the vulva. Gynecol Oncol, 1975. 3(2): p. 133–48.Google Scholar
Sanderson, P. et al., Imiquimod therapy for extramammary Paget’s disease of the vulva: a viable non-surgical alternative. J Obstet Gynaecol, 2013. 33(5): p. 479–83.Google Scholar
Cohen, P. R. et al., Treatment of extramammary Paget disease with topical imiquimod cream: case report and literature review. South Med J, 2006. 99(4): p. 396402.Google Scholar
Feldmeyer, L. et al., Treatment of vulvar Paget disease with topical imiquimod: a case report and review of the literature. J Dermatol Case Rep, 2011. 5(3): p. 42–6.Google Scholar
Horn, L. C. et al., Adenoid squamous carcinoma (pseudoangiosarcomatous carcinoma) of the vulva: a rare but highly aggressive variant of squamous cell carcinoma-report of a case and review of the literature. Int J Gynecol Pathol, 2008. 27(2): p. 288–91.Google Scholar
Barakat, R. R., Bevers, M. W., Gershenson, D. M., Hoskins, W. J, Handbook of Gynecologic Oncology, 2nd edn. New York: Informal Healthcare, 2009.Google Scholar
Carlson, J. W. et al., A randomized phase III trial of VH fibrin sealant to reduce lymphedema after inguinal lymph node dissection: a Gynecologic Oncology Group study. Gynecol Oncol, 2008. 110(1): p. 7682.Google Scholar
Tauber, R. et al., Inguinal lymph node dissection: epidermal vacuum therapy for prevention of wound complications. J Plast Reconstr Aesthet Surg, 2013. 66(3): p. 390–6.Google Scholar
Buda, A. et al., The use of TachoSil for the prevention of postoperative complications after groin dissection in cases of gynecologic malignancy. Int J Gynaecol Obstet, 2012. 117(3): p. 217–19.Google Scholar
Mutch, D. G., The new FIGO staging system for cancers of the vulva, cervix, endometrium, and sarcomas. Gynecol Oncol, 2009. 115:325–8.Google Scholar
Yoder, B. J. et al., Stage IA vulvar squamous cell carcinoma: an analysis of tumor invasive characteristics and risk. Am J Surg Pathol, 2008. 32(5): p. 765–72.Google Scholar
Kelley, J. L. et al., Minimally invasive vulvar carcinoma: an indication for conservative surgical therapy. Gynecol Oncol, 1992. 44(3): p. 240–4.Google Scholar
Sidor, J. et al., Challenging the concept of microinvasive carcinoma of the vulva: report of a case with regional lymph node recurrence and review of the literature. BioMed Cent Cancer, 2006. 6: p. 157.Google Scholar
Magrina, J. F. et al., Stage I squamous cell cancer of the vulva. Am J Obstet Gynecol, 1979. 134(4): p. 453–9.Google Scholar
Rutledge, F., Smith, J. P., and Franklin, E. W., Carcinoma of the vulva. Am J Obstet Gynecol, 1970. 106(8): p. 1117–30.Google Scholar
Hacker, N. F. et al., Individualization of treatment for stage I squamous cell vulvar carcinoma. Obstet Gynecol, 1984. 63(2): p. 155–62.Google Scholar
Lin, J. Y. et al., Morbidity and recurrence with modifications of radical vulvectomy and groin dissection. Gynecol Oncol, 1992. 47(1): p. 80–6.Google Scholar
Soliman, A. A. et al., Morbidity of inguinofemoral lymphadenectomy in vulval cancer. Scientific World Journal, 2012. 2012: p. 341253.Google Scholar
Farias-Eisner, R. et al., Conservative and individualized surgery for early squamous carcinoma of the vulva: the treatment of choice for stage I and II (T1-2N0-1M0) disease. Gynecol Oncol, 1994. 53(1): p. 55–8.Google Scholar
Hacker, N. F. et al., Radical vulvectomy and bilateral inguinal lymphadenectomy through separate groin incisions. Obstet Gynecol, 1981. 58(5): p. 574–9.Google Scholar
Moore, D. H. et al., Preoperative chemoradiation for advanced vulvar cancer: a phase II study of the Gynecologic Oncology Group. Int J Radiat Oncol Biol Phys, 1998. 42(1): p. 7985.Google Scholar
Woelber, L. et al., Clinicopathological prognostic factors and patterns of recurrence in vulvar cancer. Anticancer Res, 2009. 29(2): p. 545–52.Google Scholar
Gadducci, A. et al., Old and new perspectives in the management of high-risk, locally advanced or recurrent, and metastatic vulvar cancer. Crit Rev Oncol Hematol, 2006. 60(3): p. 227–41.Google Scholar
Drew, P. A. et al., Prognostic factors in carcinoma of the vulva: a clinicopathologic and DNA flow cytometric study. Int J Gynecol Pathol, 1996. 15(3): p. 235–41.Google Scholar
Homesley, H. D. et al., Prognostic factors for groin node metastasis in squamous cell carcinoma of the vulva: a Gynecologic Oncology Group study. Gynecol Oncol, 1993. 49(3): p. 279–83.Google Scholar
Ryan, M. et al., Aetiology and prevalence of lower limb lymphoedema following treatment for gynaecological cancer. Aust N Z J Obstet Gynaecol, 2003. 43(2): p. 148–51.Google Scholar
Beesley, V. et al., Lymphedema after gynecological cancer treatment: prevalence, correlates, and supportive care needs. Cancer, 2007. 109(12): p. 2607–14.Google Scholar
Novackova, M. et al., A prospective study in detection of lower-limb lymphedema and evaluation of quality of life after vulvar cancer surgery. Int J Gynecol Cancer, 2012. 22(6): p. 1081–8.Google Scholar
Stehman, F. B. et al., Early stage I carcinoma of the vulva treated with ipsilateral superficial inguinal lymphadenectomy and modified radical hemivulvectomy: a prospective study of the Gynecologic Oncology Group. Obstet Gynecol, 1992. 79(4): p. 490–7.Google Scholar
Rouzier, R. et al., Inguinofemoral dissection for carcinoma of the vulva: effect of modifications of extent and technique on morbidity and survival. J Am Coll Surg, 2003. 196(3): p. 442–50.Google Scholar
Gaarenstroom, K. N. et al., Postoperative complications after vulvectomy and inguinofemoral lymphadenectomy using separate groin incisions. Int J Gynecol Cancer, 2003. 13(4): p. 522–7.Google Scholar
Ramirez, P. T. and Levenback, C., Long-term outcomes of sentinel node mapping in vulvar cancer: a time to cheer with enthusiasm or pause and question current practice? Gynecol Oncol, 2016. 140(1): p. 12.Google Scholar
Van der Zee, A. G. et al., Sentinel node dissection is safe in the treatment of early-stage vulvar cancer. J Clin Oncol, 2008. 26(6): p. 884–9.Google Scholar
Oonk, M. H. et al., A comparison of quality of life between vulvar cancer patients after sentinel lymph node procedure only and inguinofemoral lymphadenectomy. Gynecol Oncol, 2009. 113(3): p. 301–5.Google Scholar
Levenback, C. F. et al., Lymphatic mapping and sentinel lymph node biopsy in women with squamous cell carcinoma of the vulva: a gynecologic oncology group study. J Clin Oncol, 2012. 30(31): p. 3786–91.Google Scholar
Hassanzade, M. et al., Lymphatic mapping and sentinel node biopsy in squamous cell carcinoma of the vulva: systematic review and meta-analysis of the literature. Gynecol Oncol, 2013. 130(1): p. 237–45.Google Scholar
Beller, U. et al., Carcinoma of the vulva. J Epidemiol Biostat, 2001. 6(1): p. 155–73.Google Scholar
Maggino, T. et al., Patterns of recurrence in patients with squamous cell carcinoma of the vulva: a multicenter CTF study. Cancer, 2000. 89(1): p. 116–22.Google Scholar

References

Eifel, PJ, Berek, JS, Markman, MA: Cancer of the cervix, vagina, and vulva. In: DeVita, VT Jr, Lawrence, TS, Rosenberg, SA: Cancer: Principles and Practice of Oncology. 9th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2011, pp 1311–44.Google Scholar
Graham, JB, Meigs, JV. Earlier detection of recurrent cancer of the uterine cervix by vaginal smear. Am J Obstet Gynecol. 1952 Oct;64(4):908–14.Google Scholar
Choo, YC, Anderson, DG: Neoplasms of the vagina following cervical carcinoma. Gyn Onc. 1982. 14:125–32.Google Scholar
Benedet, JL, Saunders, BH: Carcinoma in situ of the vagina. Am J Obstet Gynecol. 1984. 148:695700.Google Scholar
Rubin, SC, Young, J, Mikuta, JJ: Squamous carcinoma of the vagina: treatment, complications, and long-term follow up. Gynecol. Oncol. 1985. 20:346–53.Google Scholar
American Cancer Society: Cancer Facts and Figures 2016. Atlanta, GA: American Cancer Society, 2016.Google Scholar
Cramer, DW, Cutler, SJ: Incidence and histopathology of malignancies of the female genital organs in the United States. Am J Obstet Gynecol. 1974. 118:443–9.Google Scholar
Perez, CA, Arneson, AN, Dehner, LP, Galakatos, A: Radiation therapy in carcinoma of the vagina. Obstet. Gynecol. 1974. 44:862–72.Google Scholar
Sulak, P, Barnhill, D, Heller, P et al.: Nonsquamous cancer of the vagina. Gynecol. Oncol. 1988. 29:309–20.Google Scholar
Eddy, GL, Marks, RD, Miller, MC III, Underwood, PB Jr.: Primary invasive vaginal carcinoma. Am J Obstet Gynecol. 1991. 165:292–8.Google Scholar
Herman, JM, Homesley, HD, Dignan, MB: Is hysterectomy a risk factor for vaginal cancer? J Am Med Assoc. 1986. 256:601–6.Google Scholar
Alemany, L, Saunier, M, Tinoco, L et al.: Large contribution of human papillomavirus in vaginal neoplastic lesions: a worldwide study in 597 samples. Eur. J. Cancer. 2014. 50:2846.Google Scholar
Daling, JR, Madeleine, MM, Schwartz, SM et al.: A Population-based study of squamous cell vaginal cancer: HPV and cofactors. Gynecol. Oncol. 2002. 84:263.Google Scholar
FIGO Committee on Gynecologic Oncology: Current FIGO staging for cancer of the vagina, fallopian tube, ovary, and gestational trophoblastic neoplasia. Int. J. Gynaecol. Obstet. 2009. 105(1):34.Google Scholar
National Cancer Institute. SEER Survival Monograph. Data for Years 1988–2001.Google Scholar
Feldbaum, VM, Flowers, LC, Oprea-Ilies, GM: Improved survival in p16-positive vaginal cancers across all tumor stages, but no correlation with MIB-1. Am. J. Clin. Pathol. 2014. 142:664–9.Google Scholar
Herbst, AL, Scully, RE: Adenocarcinoma of the vagina in adolescence. Cancer 1970. 25:745–51.Google Scholar
Troisi, R, Hatch, EE, Titus-Ernstoff, L et al: Cancer risk in women prenatally exposed to diethylstilbestrol. Int J Cancer. 2007. 121(2):356.Google Scholar
Chyle, V, Zagars, GK, Wheeler, JA et al.: Definitive radiotherapy for carcinoma of the vagina: outcome and prognostic factors. Int J Radiat Oncol Biol Phys 1996. 35(5):891905.CrossRefGoogle ScholarPubMed
Frank, SJ, Jhingran, A, Levenback, C et al.: Definitive radiation therapy for squamous cell carcinoma of the vagina. Int J Radiat Oncol Biol Phys. 2005. 62(1):138–47.Google Scholar
Grigsby, PW: Vaginal cancer. Curr Treat Options Oncol. 2002. 3(2):125–30.Google Scholar
Dalrymple, JL, Russell, AH, Lee, SW et al.: Chemoradiation for primary invasive squamous carcinoma of the vagina. Int J Gynecol Cancer. 2004. 14(1):110–17.Google Scholar
Samant, R, Lau, B, E C et al.: Primary vaginal cancer treated with concurrent chemoradiation using Cis-platinum. Int J Radiat Oncol Biol Phys. 2007. 69(3):746–50.Google Scholar

References

National Cancer Institute. Surveillance, Epidemiology and End Results (SEER) Stat Fact Sheets: Endometrial Cancer 2015. Washington DC: National Institutes of Health; 2015.Google Scholar
Siegel, R, Naishadham, J, Jemal, A. Cancer statistic 2012. CA Cancer J Clin 2012;62:1029.Google Scholar
US Department of Health and Human Services, Centers for Disease Control and Prevention (CDC), National Center for Chronic Disease Prevention and Health Promotion, Division of Nutrition, Physical Activity and Obestiy. Nutrition, Physical Activity and Obesity Data, Trends and Maps. Altanta, GA, 2015. Available at www.cdc.gov/nccdphp/DNPAO/index.html. (Accessed February 5, 2016).Google Scholar
Fader, AN, Arriba, LN, Frasure, HE et al. Endometrial cancer and obesity: epidemiology, biomarkers, prevention and survivorship. Gynecol Oncol 2009;114:121–7.Google Scholar
Burke, WM, Orr, J, Leitao, M et al. Endometrial cancer: a review and current management strategies: part I – an SGO Clinical Practice Endometrial Cancer Working Group study. Gynecol Oncol 2014;134:385–92.Google Scholar
Bokhman, JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol 1983;15:10.Google Scholar
Boruta, DM, Gehrig, PA, Fader, AN et al. Management of women with uterine papillary serous cancer: a Society of Gynecologic Oncology (SGO) review. Gynecol Oncol 2009;115:142–53.Google Scholar
Olawaiye, AB, Boruta, DM. Management of women with clear cell endometrial cancer: a Society of Gynecologic Oncology (SGO) review. Gynecol Oncol 2009;YGYNO-973066;17.Google Scholar
Brinton, LA, Hoover, RN. Estrogen replacement therapy and endometrial cancer risk: unresolved issues: the Endometrial Cancer Collaborative Group study. Obstet Gynecol 1993;81:265–71.Google Scholar
Fisher, B et al. Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. J Natl Cancer Inst 1994;86(7):527–37.CrossRefGoogle ScholarPubMed
Sherry, B, Blanck, HM, Galuska, DA, et al. Vital Signs: State-specific obesity prevalence among adults: United States, 2009. Mor Mob Weekly Rep 2010;59 (early release):15.Google Scholar
Soliman, PT, Wu, D, Tortolero-Luna, G et al. Association between adiponectin, insulin resistance and endometrial cancer. Cancer 2006;106(11):2376–81.Google Scholar
ACOG Practic Bulletin No. 147. American College of Obstetricians and Gynecologists. Lynch syndrome. Obstet Gynecol 2014;124(5):1042–54.Google Scholar
Smith-Bindman, R, Kerlikowski, K, Feldstein, VL et al. Endovaginal ultrasound to exclude endometrial cancer and other endometrial abnormalities. J Am Med Assoc 1998;280:1510–17.Google Scholar
Dijkhuizen, FP, Mol BW, Brölmann HA, Heintz AP. The accuracy of endometrial sampling in the diagnosis of patients with endometrial carcinoma and hyperplasia: a meta-analysis. Cancer 2000;89(8):1765–72.Google Scholar
Trimble, CL, Method, M, Leitao, M et al. Management of endometrial precancers. Obstet Gyencol 2012;120:1160–75.Google Scholar
Mutter, GL, Zaino, R, Baak, JP et al. Benign endometrial hyperplasia sequence and endometrial intraepithelial neoplasia. Int J Gynecol Pathol 2007;26:103–14.Google Scholar
Baak, JP, Mutter, GL, Robboy, S et al. The molecular genetics and morphometry based endometrial intraepithelial neoplasia classification system predicts disease progression in endometrial hyperplasia more than the 1994 World Health Organization system. Cancer 2005;103:2304–12.Google Scholar
Trimble, CL, Kauderer, J, Zaino, R et al. Concurrent endometrial carcinoma in women with a biopsy diagnosis of atypical endometrial hyperplasia: a Gynecologic Oncology Group study. Cancer 2006;106:812–19.Google Scholar
Lacey, JV, Sherman, ME, Rush, BB et al. Risk of subsequent endometrial carcinoma associated with endometrial intraepithelial neoplasia classification of endometrial biopsies. Cancer 2008;113:2073–81.Google Scholar
Bansal, N, Herzog, TJ, Brunner-Brown, A et al. The utility and cost effectiveness of pre-operative computed tomography for patients with uterine malignancies. Gynecol Oncol 2008;111(2):208–12.Google Scholar
Creasman, WT, Morrow CP, Bundy BN, Homesley HD, Graham JE, Heller PB. Surgical pathologic spread patterns of endometrial cancer: a Gynecologic Oncology Group study. Cancer 1987;60(8 Suppl):2035–41.Google Scholar
Kitchener, H, Swart, AM, Qian, Q, Amos, C, Parmar, MK. Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised ASTEC Group study. Lancet 2009;373:125–36.Google Scholar
Benedetti Panici, P, Basile, S, Maneschi, F et al. Systematic pelvic lymphadenectomy vs no lymphadenectomy in early-stage endometrial carcinoma: randomized clinical trial. J Natl Cancer Inst 2008;100:1707–16.Google Scholar
Walker, JL, Piedmonte, MR, Spirtos, NM et al. Laparoscopy compared with laparotomy for comprehensive surgical staging of uterine cancer: a Gynecologic Oncology Group study LAP2. J Clin Oncol. 2009;27:5331–6.Google Scholar
Walker, J, Piedmonte, M, Spirtos, N, et al. Recurrence and survival after random assignment to laparoscopy versus laparotomy for comprehensive surgical staging of uterine cancer: a Gynecologic Oncology Group LAP2 study. J Clin Oncol. 2012;30:695700.Google Scholar
Chan, JK, Gardner, AB, Taylor, K et al. Robotic versus laparoscopic versus open surgery in morbidly obese endometrial cancer patients: a comparative analysis of total charges and complication rates. Gynecol Oncol 2015;139:300305.Google Scholar
Morice, P, Leary, A, Cruetzberg, CL et al. Endometrial cancer. Lancet 2016;387:10941108.Google Scholar
Kong, A, Johnson, N, Kitchener, HC, Lawrie, TA. Adjuvant radiotherapy for stage I endometrial cancer: an updated Cochrane systematic review and meta-analysis. J Natl Cancer Inst 2012;104:1625–34.Google Scholar
Creutzberg, CL, van Putten, WL, Koper, PC et al. Surgery and postoperative radiotherapy versus surgery alone for patients with stage 1 endometrial carcinoma: multicentre randomised trial – a PORTEC Group study, Lancet 2000;355:1404–11.Google Scholar
Keys, HM, Roberts, JA, Brunetto, VL et al. A phase III trial of surgery with or without adjunctive external pelvic radiation therapy in intermediate risk endometrial adenocarcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2004;92:744–51.Google Scholar
Bendifallah, S, Canlorbe, G, Raimond, E et al. A clue towards improving the European Society of Medical Oncology risk group classification in apparent early stage endometrial cancer? Impact of lymphovascular space invasion. Br J Cancer 2014;110:2640–6.Google Scholar
Creutzberg, CL, Nout, RA, Lybeert, ML et al. Fifteen-year radiotherapy outcomes of the randomized PORTEC-1 trial for endometrial carcinoma: the PORTEC Group study. Int J Radiat Oncol Biol Phys 2011 Nov 15;81(4):e631–e638.Google Scholar
Maggi, R, Lissoni, A, Spina, F et al. Adjuvant chemotherapy vs radiotherapy in high-risk endometrial carcinoma: results of a randomised trial. Br J Cancer 2006;95(3):266–71.Google Scholar
Nout, RA, Smit, VT, Putter, H et al. Vaginal brachytherapy versus pelvic external beam radiotherapy for patients with endometrial cancer of high-intermediate risk (PORTEC-2): an open-label, non-inferiority, randomized trial. Lancet 2010;375(9717):816–23.Google Scholar
Burke, WM, Orr, J, Leitao, M, et al. Endometrial cancer: a review and current management strategies: part IIan SGO Clinical Practice Endometrial Cancer Working Group study. Gynecol Oncol 2014;134:393402.Google Scholar
Meyer, LA, Bohlke, K, Powell, MA et al. Postoperative radiation therapy for endometrial cancer. American Society of Clinical Oncology, Clinical Practice Guideline, Endorsement of the American Society for Radiation Oncology Evidence-Based Guideline. J Clin Oncol 2015;33:2908–13.Google Scholar
Landrum, LM, Moore, KN, Myers, TK et al. Stage IVB endometrial cancer: does applying an ovarian cancer treatment paradigm result in similar outcomes? Gynecol Oncol 2009;112:337–41.Google Scholar
Susumu, N, Sagae, S, Udagawa, Y et al. Randomized phase III trial of pelvic radiotherapy versus cisplatin-based combined chemotherapy in patients with intermediate- and high-risk endometrial cancer: a Japanese Gynecologic Oncology Group study. Gynecol Oncol 2008;108(1):226–33.Google Scholar
McMeekin, DS, Filiaci, VL, Aghajanian, C et al. A randomized phase III trial of pelvic radiation therapy (PXRT) versus vaginal cuff brachytherapy followed by paclitaxel/carboplatin chemotherapy (VCB/C) in patients with high risk (HR), early stage endometrial cancer (EC): a Gynecologic Oncology Group trial. Gynecol Oncol 2014;134:438 (abstract).Google Scholar
Lambrou, NC et al. Optimal surgical cytoreduction in patients with stage III and stage IV endometrial carcinoma: a study of morbidity and survival. Gynecol Oncol 2004;93(3):653–8.Google Scholar
Bristow, RE et al. Stage IVB endometrial carcinoma: the role of cytoreductive surgery and determinants of survival. Gynecol Oncol 2000;78(2):8591.Google Scholar
National Comprehensive Cancer Network. Uterine neoplasms, www.nccn.org/professionals/physician_gls/pdf/uterine.pdf. Accessed March 1, 2016.Google Scholar
Randall, ME, Filiaci, VL, Muss, H et al. Randomized phase III trial of whole-abdominal irradiation versus doxorubicin and cisplatin chemotherapy in advanced endometrial carcinoma: a Gynecologic Oncology Group study. J Clin Oncol 2006;24:3644.Google Scholar
Fleming, GF, Brunetto, VL, Cella, D et al. Phase III trial of doxorubicin plus cisplatin with or without paclitaxel plus filgrastim in advanced endometrial carcinoma: a Gynecologic Oncology Group study. J Clin Oncol 2004;22(11):2159–66.Google Scholar
Miller, D, Filiaci, V, Fleming, G, Mannel, R et al. Randomized phase III noninferiority trial of first line chemotherapy for metastatic or recurrent endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2012;125:771 (abstract).Google Scholar
Fiorca, JV, Brunetto, VL, Hanjani, P et al. Phase II trial of alternating courses of megestrol acetate and tamoxifen in advanced endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2004;92:1014.Google Scholar
Fleming, GF. Systemic chemotherapy for uterine carcinoma: metastatic and adjuvant. J Clin Oncol 2007;25:2983–90.Google Scholar
Khoury-Collado, F, Einstein, MH, Bochner, BH et al. Pelvic exenteration with curative intent for recurrent uterine malignancies. Gynecol Oncol 2012;124(1):42–7.Google Scholar
Bradford, LS, Rauh-Hain, JA, Schorge, J, Birrer, MJ, Dizon, DS. Advances in the management of recurrent endometrial cancer. Am J Clin Oncol 2015;38:206–12.Google Scholar

References

Tropé, C.G., Abeler, V.M., Kristensen, G.B.. Diagnosis and treatment of sarcoma of the uterus: a review. Acta Oncol 2012; 51(6):694705.Google Scholar
Abeler, V.M, Royne, O., Thoresen, S.O. et al. Uterine sarcomas in Norway: a histopathological and prognostic survey of a total population from 1970 to 2000 including 419 patients. Histopathology 2009; 54:355–64.Google Scholar
Tavassoli, F.A., Devilee, P., editors. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Breast and Female Genital Organs. Lyon, France: IARC Press;2003.Google Scholar
Kurman, R.J., Carcangiu, M.L., Herrington, C.S. et al. WHO Classification of Tumors of the Female Reproductive Organs. 4th ed. Lyon, France: IARC Press; 2014;307.Google Scholar
D’Angelo, E., Prat, J.. Uterine sarcomas: a review. Gynecol Oncol 2010; 116(1):131–6.Google Scholar
Otis, C., Ocampo, A.. Protocol for the examination of specimens from patients with sarcoma of the uterus, 2013. College of American Pathologists. www.cap.org/apps/docs/committees/cancer/cancer_protocols/2013/UterineSarcomaProtocol_3000.pdf (Accessed on April 29, 2014).Google Scholar
Helman, L.J., Meltzer, P.. Mechanisms of sarcoma development. Nat Rev Cancer 2003; 3:685–94.Google Scholar
Conklin, C.M., Longacre, T.A.. Endometrial stromal tumors: the new WHO classification. Adv Anat Pathol 2014; 21(6):383–93.Google Scholar
Nordal, R.R., Thoresen, S.O.. Uterine sarcomas in Norway 1956–1992: incidence, survival and mortality. Eur J Cancer 1997; 33:907–11.Google Scholar
Montague, A.C., Swartz, D.P., Woodruff, J.D.. Sarcoma arising in a leiomyoma of the uterus: factors influencing prognosis. Am J Obstet Gynecol 1965; 92:421–7.Google Scholar
Parker, W.H., Fu, Y.S., Berek, J.S.. Uterine sarcoma in patienrs operated on for presumed leiomyoma and rapidly growing leiomyoma. Obstet Gynecol 1994; 83:414–18.Google Scholar
Rha, S.E.,Byun, J.Y., Jung, S.E. et al. CT and MRI of uterine sarcomas and their mimickers. AJR Am J Roentgenol 2003; 181:1369–74.Google Scholar
Kitajima, K., Murakami, K., Kaji, Y. et al. Spectrum of FDG PET/CT findings of uterine tumors. AJR Am J Roentgenol 2010; 195:737–43.Google Scholar
Menczer, J., Schreiber, L., Berger, E. et al. CA125 Expression in the tissue of uterine leiomyosracoma. Isr Med Assoc J 2014; 16(11):697–9.Google Scholar
Goto, A., Takeuchi, S., Sugimura, K. et al. Usefulness of Gd-DTPA contrast-enhanced dynamic MRI and serum determination of LDH and its isozymes in the differential diagnosis of leiomyosarcoma from degenerated leiomyoma of the uterus. Int J Gynecol Cancer 2002; 12(4):354–61.Google Scholar
Bansal, N., Herzog, T.J., Burke, W. et al. The utility of preoperative endometrial sampling for the detection of uterine sarcomas. Gynecol Oncol 2008;110(1):43–8.Google Scholar
National Comprehensive Cancer Network (NCCN) Guidelines. Uterine sarcoma, Version 2.2016, (Accessed February 22, 2016).Google Scholar
Zaloudek, C.J., Morris, H.J.. Mesenchymal tumors of the uterus. In: Fenoglio, CM, Wolff, M, editors. Progress in Surgical Pathology. Vol. 3. New York: Masson-Publishing Inc.;1981; 135.Google Scholar
Giuntoli, R.L., Metzinger, D.S., DiMarco, C.S. et al. Retrospective review of 208 patients with leiomyosarcoma of the uterus: prognostic indicators, surgical management, and adjuvant therapy. Gynecol Oncol 2003; 89(3):460–9.Google Scholar
Dinh, T.A., Oliva, E.A., Fuller, A.F. Jr et al. The treatment of uterine leiomyosarcoma: results from a 10-year experience (1990–1999) at the Massachusetts General Hospital. Gynecol Oncol 2004; 92(2):648–52.CrossRefGoogle ScholarPubMed
Leitao, M.M., Sonoda, Y., Bristow, R.R. et al. Incidence of lymph node and ovarian metastases in leiomyosarcoma of the uterus. Gynecol Oncol 2003; 91(1):209–12.Google Scholar
Hensley, M.L., Barrette, B.A., Baumann, K. et al. Gynecologic Cancer InterGroup (GCIG) consensus review: uterine and ovarian leiomyosarcomas. J Gynecol Cancer 2014; 24(9 Suppl 3):S61–6.Google Scholar
Kelley, T.W., Borden, E.C., Goldblum, J.R.. Estrogen and progesterone receptor expression in uterine and extrauterine leiomyosarcomas: an immunohistochemical study. Appl Immunohistochem Mol Morphol 2004; 12(4):338–41.Google Scholar
Kapp, D.S., Shin, J.Y., Chan, J.K.. Prognostic factors and survival in 1396 patients with uterine leiomyosarcomas: emphasis on impact of lymphadenectomy and oophorectomy. Cancer 2008; 112(4):820–30.CrossRefGoogle ScholarPubMed
Major, F.J. FJ, Blessing, J.A., Silverberg, S. G. et al. Prognostic factors in early-stage uterine sarcoma: a Gynecologic Oncology Group study. Cancer 1993; 71:1702–9.Google Scholar
Omura, G.A., Blessing, J.A., Major, F. et al. A randomized clinical trial of adjuvant adriamycin in uterine sarcomas: a Gynecologic Oncology Group study. J Clin Oncol 1985; 3(9):1240–5.CrossRefGoogle ScholarPubMed
Reed, N.S., Mangioni, C., Malmström, H et al. Phase III randomised study to evaluate the role of adjuvant pelvic radiotherapy in the treatment of uterine sarcomas stages I and II: an European Organisation for Research and Treatment of Cancer Gynaecological Cancer Group Study (protocol 55874). Eur J Cancer 2008; 44(6):808–18.Google Scholar
Hensley, M.L., Wathen, J.K, Maki, R.G. et al. Adjuvant therapy for high-grade, uterus-limited leiomyosarcoma: results of a phase 2 trial (SARC 005). Cancer 2013; 119(8):1555–61.Google Scholar
Hensley, M.L., Blessing, J.A., Mannel, R. et al. Fixed-dose rate gemcitabine plus docetaxel as first-line therapy for metastatic uterine leiomyosarcoma: a Gynecologic Oncology Group phase II trial. Gynecol Oncol 2008; 109(3):329–34.Google Scholar
Hensley, M.L., Ishill, N., Soslow, R. et al. Adjuvant gemcitabine plus docetaxel for completely resected stages I-IV high grade uterine leiomyosarcoma: results of a prospective study. Gynecol Oncol 2009; 112(3):563–7.Google Scholar
Moskovic, E., MacSweeney, E., Law, M. et al. Survival, patterns of spread and prognostic factors in uterine sarcoma: a study of 76 patients. Br J Radiol 1993; 66(791):1009–15.Google Scholar
Maki, R.G., Wathen, J.K., Patel, S.R. et al. Randomized phase II study of gemcitabine and docetaxel compared with gemcitabine alone in patients with metastatic soft tissue sarcomas: results of sarcoma alliance for research through collaboration study 002 [corrected]. J Clin Oncol 2007; 25(19):2755–63.Google Scholar
Hensley, M.L., Blessing, J.A., Degeest, K. et al. Fixed-dose rate gemcitabine plus docetaxel as second-line therapy for metastatic uterine leiomyosarcoma: a Gynecologic Oncology Group phase II study. Gynecol Oncol 2008; 109(3):323–8.Google Scholar
Hensley, M.L., Miller, A., O’Malley, D.M. et al. A randomized phase III trial of gemcitabine + docetaxel + bevacizumab or placebo as first-line treatment for metastatic uterine leiomyosarcoma (uLMS): a Gynecologic Oncology Group study. Gynecol Oncol 2014; 133:3(SGO #2)(Abstract).CrossRefGoogle Scholar
Sanfilippo, R., Grosso, F., Jones, R.L. et al. Trabectedin in advanced uterine leiomyosarcomas: a retrospective case series analysis from two reference centers. Gynecol Oncol 2011; 123(3):553–6.Google Scholar
van der Graaf, W.T., Blay, J.Y., Chawla, S.P. et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2012; 379(9829):1879–86.Google Scholar
O’Cearbhaill, R., Zhou, Q., Iasonos, A. et al. Treatment of advanced uterine leiomyosarcoma with aromatase inhibitors. Gynecol Oncol 2010; 116(3):424–9.Google Scholar
Bell, S.W., Kempson, R.L., Hendrisckson, M.R.. Problematic uterine smooth muscle neoplasms. A clinicopathologic study of 213 cases. Am J Surg Pathol 1994; 18(6):535–58.Google Scholar
Chan, J.K., Kawar, N/M., Shin, J.Y. et al. Endometrial stromal sarcoma: a population-based analysis. Br J Cancer 2008; 99(8):1210–5.Google Scholar
Baker, P., Oliva, E.. Endometrial stromal tumours of the uterus: a practical approach using conventional morphology and ancillary techniques. J Clin Pathol 2007; 60(3):235–43.Google Scholar
Dionigi, A., Oliva, E., Clement, P.B. et al. Endometrial stromal nodules and endometrial stromal tumors with limited infiltration: a clinicopathologic study of 50 cases. Am J Surg Pathol 2002; 26(5):567–81.Google Scholar
Tavassoli, F.A., Norris, H.J. Mesenchymal tumours of the uterus. VII. A clinicopathological study of 60 endometrial stromal nodules. Histopathology 1981; 5(1):110.CrossRefGoogle ScholarPubMed
Reich, O., Regauer, S., Urdl, W. et al. Expression of oestrogen and progesterone receptors in low-grade endometrial stromal sarcomas. Br J Cancer 2000; 82(5):1030–4.Google Scholar
Nucci, M.R., Harburger, D., Koontz, J. et al. Molecular analysis of the JAZF1-JJAZ1 gene fusion by RT-PCR and fluorescence in situ hybridization in endometrial stromal neoplasms. Am J Surg Pathol 2007; 31(1):6570.Google Scholar
Gadducci, A., Cosio, S., Romanini, A. et al. The management of patients with uterine sarcoma: a debated clinical challenge. Crit Rev Oncol Hematol 2008; 65(2):129–42.Google Scholar
Shah, J.P., Bryant, C.S., Kumar, S. et al. Lymphadenectomy and ovarian preservation in low-grade endometrial stromal sarcoma. Obstet Gynecol 2008; 112(5):1102–8.Google Scholar
Li, N., Wu, L.Y., Zhang, H.T et al. Treatment options in stage I endometrial stromal sarcoma: a retrospective analysis of 53 cases. Gynecol Oncol 2008; 108(2):306–11.Google Scholar
Chang, K.L, Crabtree, G.S, Lim-Tan, S.K. et al. Primary uterine endometrial stromal neoplasms. A clinicopathologic study of 117 cases. Am J Surg Pathol 1990; 14(5):415–38.Google Scholar
Pink, D., Lindner, T., Mrozek, A. et al. Harm or benefit of hormonal treatment in metastatic low-grade endometrial stromal sarcoma: single center experience with 10 cases and review of the literature. Gynecol Oncol 2006; 101(3):464–9.Google Scholar
Reich, O., Rehauer, S.. Hormonal therapy of endometrial stromal sarcoma. Curr Opin Oncol 2007; 19(4):347–52.Google Scholar
Chew, I., Oliva, E.. Endometrial stromal sarcomas: a review of potential prognostic factors. Adv Anat Pathol 2010; 17(2):113–21.Google Scholar
Beck, T.L., Singhal, P.K., Ehrenberg, H.M et al. Endometrial stromal sarcoma: analysis of recurrence following adjuvant treatment. Gynecol Oncol 2012; 125(1):141–4.Google Scholar
Lee, C.H., Marino-Enriquez, A., Ou, W. et al. The clinicopathologic features of YWHAE-FAM22 endometrial stromal sarcomas: a histologically high-grade and clinically aggressive tumor. Am J Surg Pathol 2012; 36(5):641–53.Google Scholar
Amant, F., Coosemans, A., Debiec-Rychter, M. et al. Clinical management of uterine sarcomas. Lancet Oncol 2009; 10(12):1188–98.Google Scholar
Tanner, E.J., Garg, K., Soslow, M.M., Jr et al. High grade undifferentiated uterine sarcoma: surgery, treatment, and survival outcomes. Gynecol Oncol 2012; 127(1):2731.Google Scholar
Leath, C.A., Huh, W.K., Hyde, J., Jr et al. A multi-institutional review of outcomes of endometrial stromal sarcoma. Gynecol Oncol 2007; 105(3):630–4.Google Scholar
Greer, B.E., Koh, W.J., Abu-Rustum, N. et al. Uterine neoplasms: clinical practice guidelines in oncology. J Natl Compr Canc Netw 2009; 7(5):498531.Google Scholar
Malouf, G.G., Lhomme, C., Duvillard, P. et al. Prognostic factors and outcome of undifferentiated endometrial sarcoma treated by multimodal therapy. Int J Gynaecol Obstet 2013;122(1):5761.Google Scholar
Clement, P.B., Scully, R.E.. Mullerian adenosarcoma of the uterus: a clinicopathologic analysis of 100 cases with a review of the literature. Hum Pathol 1990; 21(4):363–81.Google Scholar
P.B. Clement, . Mullerian adenosarcoma of the uterus wuth sarcomatous overgrowth: a clinicopathological analysis of 10 cases. Am J Surg Pathol 1989; 13(1):2838.Google Scholar
Gallardo, A., Prat, J.. Mullerian adenosarcoma: a clinicopathologic and immunohistochemical study of 55 cases challenging the existence of adenofibroma. Am J Surg Pathol 2009; 33(2):278–88.Google Scholar
Nam, J.H.. Surgical treatment of uterine sarcoma. Best Pract Res Clin Obstet Gynaecol 2011; 25(6):751–60.Google Scholar
Tanner, E.J., Toussaint, T., Leitao, M.M. et al. Management of uterine adenosarcomas with and without sarcomatous overgrowth. Gynecol Oncol 2013; 129(1):140–4.Google Scholar
Krivak, T.C., Seidman, J.D., McBroom, J.W. et al. Uterine adenosarcoma with sarcomatous overgrowth versus uterine carcinosarcoma: comparison of treatment and survival. Gynecol Oncol 2001; 83(1):8994.Google Scholar
Friendlander, M.L., Covens, A., Glasspool, R.M. et al. Gynecologic Cancer InterGroup (GCIG) consensus review for mullerian adenosarcoma of the female genital tract. Int J Gynecol Cancer 2014; 24(9 Suppl 3):S78–82.Google Scholar

References

US Cancer Statistics Working Group. 1999–2012 incidence and mortality web-based report. Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute. Atlanta: United States Cancer Statistics; 2015. Available from: https://nccd.cdc.gov/uscs/Google Scholar
Tone, AA, Salvador, S, Finlayson, SJ et al. The role of the fallopian tube in ovarian cancer. Clin Adv Hematol Oncol 2012; 10(5): 296306.Google Scholar
Kindelberger, DW, Lee, Y, Miron, A et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. Am J Surg Pathol 2007; 31(2): 161–9.Google Scholar
Callahan, MJ, Crum, CP, Medeiros, F et al. Primary fallopian tube malignancies in BRCA-positive women undergoing surgery for ovarian cancer risk reduction. J Clin Oncol 2007; 25(25): 3985–90.Google Scholar
Siegel, R, Naishadham, D, Jemal, A. Cancer statistics. CA Cancer J Clin 2013; 63(1): 1130.Google Scholar
Dinkelspiel, HE, Champer, M, Hou, J et al. Long-term mortality among women with epithelial ovarian cancer. Gynecol Oncol 2015; 138(2): 421–8.Google Scholar
Kerlikowske, K, Brown, JS, Grady, DG. Should women with familial ovarian cancer undergo prophylactic oophorectomy? Obstet Gynecol 1992; 80(4): 700.Google Scholar
Parazzini, F, La Vecchia, C, Negri, E et al. Menstrual factors and the risk of epithelial ovarian cancer. J Clin Epidemiol 1989; 42: 443–8.Google Scholar
Whittemore, AS, Harris, R, Itnyre, J. Characteristics relating to ovarian cancer risk: collaborative analysis of 12 US case-control studies. IV. The pathogenesis of epithelial ovarian cancer. Am J Epidemiol 1992; 136: 1212–20.Google Scholar
Rossing, MA, Daling, JR, Weiss, NS et al. Ovarian tumors in a cohort of infertile women. N Engl J Med 1994; 331: 771–6.Google Scholar
Ness, RB, Cramer, DW, Goodman, MT et al. Infertility, fertility drugs, and ovarian cancer: a pooled analysis of case-control studies. Am J Epidemiol 2002; 155: 217–24.Google Scholar
Greene, MH, Clark, JW, Blayney, DW. The epidemiology of ovarian cancer. Semin Oncol 1984; 11: 209–26.Google Scholar
Rose, DP, Boyar, AP, Wynder, EL. International comparisons of mortality rates for cancer of the breast, ovary, prostate, and colon, and per capita food consumption. Cancer 1986; 58: 2363–71.Google Scholar
Cramer, DW, Harlow, BL, Willett, WC et al. Galactose consumption and metabolism in relation to the risk of ovarian cancer. Lancet 1989; 2: 6671.CrossRefGoogle Scholar
Fairfield, KM, Hankinson, SE, Rosner, BA et al. Risk of ovarian carcinoma and consumption of vitamins A, C, and E and specific carotenoids: a prospective analysis. Cancer 2001; 92: 2318–26.Google Scholar
Steed, H, Chapman, W, Laframboise, S. Endometriosis-associated ovarian cancer: a clinicopathologic review. J Obstet Gynaecol Can 2004; 26( 8): 709–15.Google Scholar
Pal, T, Permuth-Wey, J, Betts, JA et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer 2005; 104(12): 2807–16.Google Scholar
Aarnio, M, Mecklin, JP, Aaltonen, LA et al. Life-time risk of different cancers in hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Int J Cancer 1995; 64: 430–3.Google Scholar
Bellacosa, A, Genuardi, M, Anti, M et al. Hereditary nonpolyposis colorectal cancer: review of clinical, molecular genetics, and counseling aspects. Am J Med Genet 1996; 62: 353–64.Google Scholar
Lesieur, B, Kane, A, Duvillard, P et al. Prognostic value of lymph node involvement in ovarian serous borderline tumors. Am J Obstet Gynecol 2011; 204(5): 438.Google Scholar
Skírnisdóttir, I, Garmo, H, Wilander, E, Holmberg, L. Borderline ovarian tumors in Sweden 1960–2005: trends in incidence and age at diagnosis compared to ovarian cancer. Int J Cancer 2008; 123(8): 18971901.Google Scholar
Suh-Burgmann, E. Long-term outcomes following conservative surgery for borderline tumor of the ovary: a large population-based study. Gynecol Oncol 2006; 103(3): 841–7.CrossRefGoogle ScholarPubMed
Fauvet, R, Boccara, J, Dufournet, C et al. Restaging surgery for women with borderline ovarian tumors: results of a French multicenter study. Cancer 2004 Mar 15;100(6):1145–51.Google Scholar
Gershenson, DM. Clinical management potential tumours of low malignancy. Best Pract Res Clin Obstet Gynaecol 2002; 16(4): 513–27.CrossRefGoogle ScholarPubMed
Shih, KK, Zhou, QC, Aghajanian, C et al. Patterns of recurrence and role of adjuvant chemotherapy in stage II-IV serous ovarian borderline tumors. Gynecol Oncol 2010; 119(2): 270–3.Google Scholar
Zaino, R, Brady, MF, Lele, S et al. Advanced stage mucinous adenocarcinoma of the ovary is both rare and highly lethal. Cancer 2011; 117: 554–62.Google Scholar
del Carmen, MG, Birrer, M, Schorge, JO. Clear cell carcinoma of the ovary: a review of the literature. Gynecol Oncol 2012; 126(3): 481–90.Google Scholar
Ali, RH, Seidman, JD, Luk, M et al. Transitional cell carcinoma of the ovary is related to high-grade serous carcinoma and is distinct from malignant brenner tumor. Int J Gynecol Pathol 2012; 31(6): 499506.Google Scholar
Buys, SS, Partridge, E, Black, A et al. Effect of screening on ovarian cancer mortality. J Am Med Assoc 2011; 305: 22952303.Google Scholar
Marchetti, C, De Felice, F, Palaia, I et al. Risk-reducing salpingo-oophorectomy: a meta-analysis on impact on ovarian cancer risk and all cause mortality in BRCA 1 and BRCA 2 mutation carriers. BioMed Cent Women’s Health 2014; 14: 150.Google Scholar
Parker, WH, Feskanich, D, Broder, MS et al. Long-term mortality associated with oophorectomy compared with ovarian conservation in the nurses’ health study. Obstet Gynecol 2013; 121(4): 709–16.Google Scholar
McAlpine, JN, Hanley, GE, Woo, MM et al. Ovarian Cancer Research Program of British Columbia. Opportunistic salpingectomy: uptake, risks, and complications of a regional initiative for ovarian cancer prevention. Am J Obstet Gynecol 2014; 210(5): 471.e1–11.Google Scholar
Kumle, M, Weiderpass, E, Braaten, T et al. Risk for invasive and borderline epithelial ovarian neoplasias following use of hormonal contraceptives: the Norwegian-Swedish Women’s Lifestyle and Health Cohort Study. Br J Cancer 2004; 90(7): 1386–91.Google Scholar
Goff, BA, Mandel, LS, Melancon, CH, Muntz, HG. Frequency of symptoms of ovarian cancer in women presenting to primary care clinics. J Am Med Assoc 2004; 291(22): 2705–12.Google Scholar
Myers, ER, Bastian, LA, Havrilesky, LJ et al. Management of adnexal mass. Evid Rep Technol Assess (Full Rep) 2006 (130): 1145.Google Scholar
Sainz de la Cuesta, R, Goff, BA, Fuller, AF Jr et al. Prognostic importance of intraoperative rupture of malignant ovarian epithelial neoplasms. Obstet Gynecol 1994; 84(1): 17.Google Scholar
Im, SS, Gordon, AN, Buttin, BM et al. Validation of referral guidelines for women with pelvic masses. Obstet Gynecol 2005; 105(1): 3541.Google Scholar
Li, F, Tie, R, Chang, K et al. Does risk for ovarian malignancy algorithm excel human epididymis protein 4 and CA125 in predicting epithelial ovarian cancer: a meta-analysis. BioMed Cent Cancer 2012; 12: 258.Google Scholar
Kim, KH, Zsebik, GN, Straughn, JM Jr, Landen, CN Jr. Management of complex pelvic masses using a multivariate index assay: a decision analysis. Gynecol Oncol 2012; 126(3): 364–8.Google Scholar
Bailey, CL, Ueland, FR, Land, GL et al. The malignant potential of small cystic ovarian tumors in women over 50 years of age. Gynecol Oncol 1998; 69: 37.Google Scholar
Kim, HS, Ahn, JH, Chung, HH et al. Impact of intraoperative rupture of the ovarian capsule on prognosis in patients with early-stage epithelial ovarian cancer: a meta-analysis. Eur J Surg Oncol. 2013; 39(3): 279–89.Google Scholar
Giede, KC, Kieser, K, Dodge, J, Rosen, B. Who should operate on patients with ovarian cancer? An evidence-based review. Gynecol Oncol 2005; 99(2): 447–61.Google Scholar
Elattar, A, Bryant, A, Winter-Roach, BA et al. Optimal primary surgical treatment for advanced epithelial ovarian cancer. Cochrane Database Syst Rev 2011 Aug;(8):CD007565.Google Scholar

References

Koonings, PP, Campbell, K, Mishell, DR Jr et al. Relative frequency of primary ovarian neoplasms: a 10-year review. Obstet Gynecol. 1989; 74: 921926.Google Scholar
Quirk, JT, Natarajan, N. Ovarian cancer incidence in the United States. Gynecol Oncol. 2005; 97(2): 519523.Google Scholar
Quirk, JT, Natarajan, N, Mettlin, CJ. Age-specific ovarian cancer incidence rate patterns in the United States. Gynecol Oncol. 2005; 99(1): 248250.Google Scholar
Schneider, DT, Calaminus, G, Harms, D et al. Ovarian sex cord-stromal tumors in children and adolescents. J Reprod Med. 2005; 50: 439446.Google Scholar
Miller, BE, Barron, BA, Wan, JY et al. Prognostic factors in adult granulosa cell tumor of the ovary. Cancer. 1997; 79: 1951.Google Scholar
Soper, JT. Gestational trophoblastic disease. Obstet Gynecol. 2006; 108(1): 176187.Google Scholar
Malmstrom, H, Hogberg, T, Risberg, B et al. Granulosa cell tumors of the ovary: prognostic factors and outcome. Gynecol Oncol. 1994; 52: 5055.Google Scholar
Sharony, R, Aviram, R, Fishman, A et al. Granulosa cell tumors of the ovary: 10 years follow-up data of 65 patients. Anticancer Res. 2004; 24: 12231229.Google Scholar
Piura, B, Nemet, D, Yanai-Inbar, I et al. Granulosa cell tumor of the ovary: a study of 18 cases. J Surg Oncol. 1994; 55: 7177.Google Scholar
Young, RH, Dickersin, GR, Scully, RE. Juvenile granulosa cell tumor of the ovary: a clinicopathologic analysis of 125 cases. Am J Surg Pathol. 1984; 8: 575596.Google Scholar
Zanagnolo, V, Pasinetti, B, Sartori, E. Clinical review of 63 cases of sex cord stromal tumors. Eur J Gynaecol Oncol. 2004; 25(4): 431438.Google Scholar
Shah, SP, Kobel, M, Senz, J et al. Mutation of FOXL2 in granulosa-cell tumors of ovary. N Engl J Med. 2009; 360(26): 27192729.Google Scholar
Chen, VW, Ruiz, B, Killeen, J et al. Pathology and classification of ovarian tumors. Cancer. 2003; 97(Suppl. 10): 26312642.Google Scholar
Bjorkholm, E, Silfversward, C. Prognostic factors in granulosa-cell tumors. Gynecol Oncol. 1981; 11: 261274.Google Scholar
Zambetti, M, Escobedo, A, Pilotti, S et al. Cis-platinum/vinblastine/bleomycin combination chemotherapy in advanced or recurrent granulosa cell tumor of the ovary. Gynecol Oncol. 1990; 36: 317320.Google Scholar
Boggess, JF, Soules, MR, Goff, BA et al. Serum inhibin and disease status in women with ovarian granulosa cell tumors. Gynecol Oncol. 1997; 64: 6469.CrossRefGoogle ScholarPubMed
Mom, CH, Engelen, MJ, Willemse, PH et al. Granulosa cell tumors of the ovary: the clinical value of serum inhibin A and B levels in a large single center cohort. Gynecol Oncol. 2007; 105: 365372.Google Scholar
Miller, BE, Barron, BA, Wan, JY et al. Prognostic factors in adult granulosa cell tumors of the ovary. Cancer. 1997; 79: 19511955.Google Scholar
Brown, J, Sood, AK, Deavers, MT et al. Patterns of metastasis in sex cord-stromal tumors of the ovary: Can routine staging lymphadenectomy be omitted? Gynecol Oncol. 2009; 113: 8690.Google Scholar
Herbst, AL. Neoplastic diseases of the ovary. In: Mishell, DR, Stenchever, MA, Droegemueller, W, Herbst, AL, eds. Comprehensive Gynecology. 3rd ed. New York: Mosby-Year Book; 1997.Google Scholar
Homesley, HD, Bundy, BN, Hurteau, JA et al. Bleomycin, etoposide, and cisplatin combination chemotherapy of ovarian granulosa cell tumors and other stromal malignancies: a Gynecologic Oncology Group study. Gynecol Oncol. 1999; 72: 131137.Google Scholar
Tao, X, Sood, A, Deavers, M et al. Anti-angiogenesis therapy with bevacizumab for patients with ovarian granulosa cell tumors. Gynecol Oncol. 2009; 114: 431436.Google Scholar
Young, RH, Dickersin, GR, Scully, RE. Juvenile granulosa cell tumor of the ovary. A clinicopathological analysis of 125 cases. Am J Surg Pathol. 1984; 8: 575596.Google Scholar
Scully, RE. Sex cord tumor with annular tubules: a distinctive ovarian tumor of the Peutz-Jeghers syndrome. Cancer. 1970; 25: 11071121.Google Scholar
Tamimi, H, Bolen, JW. Enchondromatosis (Ollier’s disease) and ovarian juvenile granulosa cell tumor. Cancer. 1984; 53: 16051608.Google Scholar
Brisigotti, M, Fabbretti, G, Pesce, F et al. Congenital bilateral juvenile granulosa cell tumor of the ovary in leprechaunism: a case report. Pediatr Pathol. 1993; 3: 549558.Google Scholar
Novak, E. Life and works of Robert Meyer. Am J Obstet Gynecol. 1931; 22: 697713.Google Scholar
Morris, M, Scully, RE. Endocrine Pathology of the Ovary. St Louis: Mosby; 1958; pp. 8296.Google Scholar
Young, RH, Scully, RE. Ovarian Sertoli cell tumors: a report of 10 cases. Int J Gynecol Pathol. 1984; 2: 349363.Google Scholar
Ferry, JA, Young, RH, Engel, G et al. Oxyphilic Sertoli cell tumor of the ovary: a report of three cases, two in patients with Peutz-Jeghers syndrome. Int J Gynecol Pathol. 1994; 13: 259266.Google Scholar
Young, RH, Scully, RE. Ovarian Sertoli-Leydig cell tumors with a retiform pattern: a problem in histopathologic diagnosis. A report of 25 cases. Am J Surg Pathol. 1983; 7: 755771.Google Scholar
Cohen, I, Shapira, M, Cuperman, S et al. Direct in-vivo detection of atypical hormonal expression of a Sertoli-Leydig cell tumor following stimulation with human chorionic gonadotophin. Clin Endocrinol. 1993; 39: 491495.Google Scholar
Young, RH, Scully, RE. Well-differentiated ovarian Sertoli-Leydig cell tumors: a clinicopathologic analysis of 23 cases. Int J Gynecol Pathol. 1984; 3: 277290.Google Scholar
Young, RH, Scully, RE. Ovarian sex cord-stromal tumors with bizarre nuclei: a clinicopathologic analysis of 17 cases. Int J Gynecol Pathol. 1983; 1: 325335.Google Scholar
Ohashi, M, Hasegawa, Y, Haji, M et al. Production of immunoreactive inhibin by a virilizing ovarian tumor (Sertoli-Leydig tumor). Clin Endocinol. 1990; 33: 613618.Google Scholar
Bjorkholm, E, Silfrversward, C. Theca-cell tumors. Clinical features and prognosis. Acta Radiol Oncol. 1980; 19: 241244.Google Scholar
Clement, PB, Young, RH, Hanna, W et al. Sclerosing peritonitis associated with luteinized thecomas of the ovary. Am J Surg Pathol. 1994; 18: 113.Google Scholar
Dockerty, MB, Mason, JC. Ovarian fibromas: clinical and pathologic study of 283 cases. Am J Obstet Gynecol. 1944; 47: 741752.Google Scholar
Meigs, JV. Fibroma of the ovary with ascites and hydrothorax: Meigs’ syndrome. Am J Obstet Gynecol. 1954; 67: 962987.Google Scholar
Suit, PF, Hart, WR. Sclerosing stromal tumor of the ovary: an ultrastructural study and review of the literature to evaluate hormonal function. Cleve Clin J Med. 1988; 55: 189194.Google Scholar
Healy, DL, Burger, HG, Mamers, P et al. Elevated serum inhibin concentrations in postmenopausal women with ovarian tumors. N Engl J Med. 1993; 329: 15391542.Google Scholar
Young, RH, Welch, WR, DIckersin, GR et al. Ovarian sex cord tumor with annular tubules: review of 4 cases including 27 with Peutz-Jeghers syndrome and four with adenoma malignum of the cervix. Cancer. 1982; 50: 13841402.Google Scholar
Srivatsa, PJ, Keeney, GL, Podratz, KC. Disseminated cervical adenoma malignum and bilateral ovarian sex cord tumors with annular tubules associated with Peutz-Jeghers syndrome. Gynecol Oncol. 1994; 43: 256264.Google Scholar
Puls, LE, Hamous, J, Morrow, MS et al. Recurrent ovarian sex cord tumor with annular tubules: tumor marker and chemotherapy experience. Gynecol Oncol. 1994; 54: 396401.Google Scholar
Martin-Jimenez, A, Condor-Munro, E, Valls-Porcel, M et al. Gynandroblastoma of the ovary. Review of the literature. J Gynecol Obstet Biol Reprod. 1994; 23: 391394.Google Scholar
Novak, ER. Gynandroblastoma of the ovary: review of 8 cases from the Ovarian Tumor Registry. Obstet Gynecol. 1967; 30: 709715.Google Scholar
Hayes, MC, Scully, RE. Stromal luteoma of the ovary: a clincopathological analysis of 25 cases. Int J Gynecol Pathol. 1987; 6: 313321.Google Scholar
Paraskevas, M, Scully, RE. Hilus cell tumor of the ovary. A clinicopathological analysis of 12 Reinke crystal-positive and nine crystal-negative cases. Int J Gynecol Pathol. 1989; 8: 299310.Google Scholar
Hayes, MC, Scully, RE. Ovarian steroid cell tumors (not otherwise specified). A clinicopathological analysis of 63 cases. Am J Surg Pathol. 1987; 11: 835845.Google Scholar
Gershenson, DM, Copeland, LJ, Kavanagh, JJ et al. Treatment of metastatic stromal tumors of the ovary with cisplatin, doxorubicin, and cyclophosphamide. Obstet Gynecol. 1987; 70: 765769.Google Scholar

References

Blaustein, A, Kurman, RJ. Blaustein’s Pathology of the Female Genital Tract. 6th ed. New York: Springer; 2011. xv, 1246pp.Google Scholar
Talerman, A. Germ cell tumors of the ovary. Curr Opin Obstet Gynecol. 1997;9(1):44–7.Google Scholar
Low, JJ, Ilancheran, A, Ng, JS. Malignant ovarian germ-cell tumours. Best Pract Res Clin Obstet Gynaecol. 2012;26(3):347–55.Google Scholar
Gershenson, DM. Management of early ovarian cancer: germ cell and sex cord-stromal tumors. Gynecol Oncol. 1994;55(3 Pt 2):S62–72.Google Scholar
Norris, HJ, Jensen, RD. Relative frequency of ovarian neoplasms in children and adolescents. Cancer. 1972;30(3):713–9.Google Scholar
Smith, HO, Berwick, M, Verschraegen, CF. Incidence and survival rates for female malignant germ cell tumors. Obstet Gynecol. 2006;107(5):1075–85.CrossRefGoogle ScholarPubMed
Kurman, RJ, International Agency for Research on Cancer, World Health Organization. WHO Classification of Tumours of Female Reproductive Organs. 4th ed. Lyon: International Agency for Research on Cancer; 2014. 307 pp.Google Scholar
Lin, KY, Bryant, S, Miller, DS, Kehoe, SM, Richardson, DL, Lea, JS. Malignant ovarian germ cell tumor: role of surgical staging and gonadal dysgenesis. Gynecol Oncol. 2014;134(1):84–9.Google Scholar
Scully, RE. Gonadoblastoma: a review of 74 cases. Cancer. 1970;25(6):1340–56.Google Scholar
Matei, DE, Michael, H, Riussell, AH, Gershenson, DM. Ovarian germ cell tumors. In: Barakat, RR, Markman, M, Randall, ME, eds. Principles and Practice of Gynecologic Oncology, 5th ed. Baltimore, MD: Lippincott Williams & Wilkins; 2009. p. 837–54.Google Scholar
Schellhas, HF. Malignant potential of the dysgenetic gonad. Part 1. Obstet Gynecol. 1974;44(2):298309.Google Scholar
Young, RH. Ovarian tumors and tumor-like lesions in the first three decades. Sem Diag Pathol. 2014;31(5):382426.Google Scholar
Kurman, RJ, Norris, HJ. Malignant germ cell tumors of the ovary. Hum Pathol. 1977;8(5):551–64.Google Scholar
Sever, M, Jones, TD, Roth, LM et al. Expression of CD117 (c-kit) receptor in dysgerminoma of the ovary: diagnostic and therapeutic implications. Mod Pathol. 2005;18(11):1411–16.Google Scholar
Cheng, L, Thomas, A, Roth, LM, Zheng, W, Michael, H, Karim, FW. OCT4: a novel biomarker for dysgerminoma of the ovary. Am J Surg Pathol. 2004;28(10):1341–6.Google Scholar
Hoei-Hansen, CE, Kraggerud, SM, Abeler, VM, Kaern, J, Rajpert-De Meyts, E, Lothe, RA. Ovarian dysgerminomas are characterised by frequent KIT mutations and abundant expression of pluripotency markers. Mol Cancer. 2007;6:12.Google Scholar
Nogales, FF, Preda, O, Nicolae, A. Yolk sac tumours revisited. A review of their many faces and names. Histopath. 2012;60(7):1023–33.Google Scholar
Kurman, RJ, Norris, HJ. Endodermal sinus tumor of the ovary: a clinical and pathologic analysis of 71 cases. Cancer. 1976;38(6):2404–19.Google Scholar
McCluggage, WG, Young, RH. Immunohistochemistry as a diagnostic aid in the evaluation of ovarian tumors. Semin Diagn Pathol. 2005;22(1):332.Google Scholar
Ramalingam, P, Malpica, A, Silva, EG, Gershenson, DM, Liu, JL, Deavers, MT. The use of cytokeratin 7 and EMA in differentiating ovarian yolk sac tumors from endometrioid and clear cell carcinomas. Am J Surg Pathol. 2004;28(11):14991505.Google Scholar
Kurman, RJ, Norris, HJ. Embryonal carcinoma of the ovary: a clinicopathologic entity distinct from endodermal sinus tumor resembling embryonal carcinoma of the adult testis. Cancer. 1976;38(6):2420–33.Google Scholar
Kurman, RJ, Norris, HJ. Malignant mixed germ cell tumors of the ovary: a clinical and pathologic analysis of 30 cases. Obstet Gynecol. 1976;48(5):579–89.Google Scholar
Doss, N, Jr., Forney, JP, Vellios, F, Nalick, RH. Covert bilaterality of mature ovarian teratomas. Obstet Gynecol. 1977;50(6):651–3.Google Scholar
Ayhan, A, Aksu, T, Develioglu, O, Tuncer, ZS, Ayhan, A. Complications and bilaterality of mature ovarian teratomas (clinicopathological evaluation of 286 cases). Aust N Z J Obstet Gynaecol. 1991;31(1):83–5.Google Scholar
Rim, SY, Kim, SM, Choi, HS. Malignant transformation of ovarian mature cystic teratoma. Int J Gynecol Cancer. 2006;16(1):140–4.Google Scholar
Westhoff, C, Pike, M, Vessey, M. Benign ovarian teratomas: a population-based case-control study. Br J Cancer. 1988;58(1):93–8.Google Scholar
Dos Santos, L, Mok, E, Iasonos, A et al. Squamous cell carcinoma arising in mature cystic teratoma of the ovary: a case series and review of the literature. Gynecol Oncol. 2007;105(2):321–4.Google Scholar
Norris, HJ, Zirkin, HJ, Benson, WL. Immature (malignant) teratoma of the ovary: a clinical and pathologic study of 58 cases. Cancer. 1976;37(5):2359–72.Google Scholar
O’Connor, DM, Norris, HJ. The influence of grade on the outcome of stage I ovarian immature (malignant) teratomas and the reproducibility of grading. Int J Gynecol Pathol. 1994;13(4):283–9.Google Scholar
De Backer, A, Madern, GC, Oosterhuis, JW, Hakvoort-Cammel, FG, Hazebroek, FW. Ovarian germ cell tumors in children: a clinical study of 66 patients. Pediatr Blood Cancer. 2006;46(4):459–64.Google Scholar
Gershenson, DM, Del Junco, G, Copeland, LJ, Rutledge, FN. Mixed germ cell tumors of the ovary. Obstet Gynecol. 1984;64(2):200206.Google Scholar
Tangjitgamol, S, Hanprasertpong, J, Manusirivithaya, S, Wootipoom, V, Thavaramara, T, Buhachat, R. Malignant ovarian germ cell tumors: clinico-pathological presentation and survival outcomes. Acta Obstet Gynecol Scand. 2010;89(2):182–9.Google Scholar
Yang, C, Wang, S, Li, CC, Zhang, J, Kong, XR, Ouyang, J. Ovarian germ cell tumors in children: a 20-year retrospective study in a single institution. Eur J Gynaecol Oncol. 2011;32(3):289–92.Google Scholar
Panteli, C, Curry, J, Kiely, E et al. Ovarian germ cell tumours: a 17-year study in a single unit. Eur J Pediatr Surg. 2009;19(2):96100.Google Scholar
Asadourian, LA, Taylor, HB. Dysgerminoma. An analysis of 105 cases. Obstet Gynecol. 1969;33(3):370–9.Google Scholar
Kodama, M, Grubbs, BH, Blake, EA et al. Feto-maternal outcomes of pregnancy complicated by ovarian malignant germ cell tumor: a systematic review of literature. Eur J Obstet Gynecol Repr Bio. 2014;181:145–56.Google Scholar
Pectasides, D, Pectasides, E, Kassanos, D. Germ cell tumors of the ovary. Cancer Treat Rev. 2008;34(5):427–41.Google Scholar
Sekiya, S, Seki, K, Nagai, Y. Rise of serum CA 125 in patients with pure ovarian yolk sac tumors. Int J Gynaecol Obstet. 1997;58(3):323–4.Google Scholar
Levato, F, Martinello, R, Campobasso, C, Porto, S. LDH and LDH isoenzymes in ovarian dysgerminoma. Eur J Gynaecol Oncol. 1995;16(3):212–5.Google Scholar
Schwartz, PE, Morris, JM. Serum lactic dehydrogenase: a tumor marker for dysgerminoma. Obstet Gynecol. 1988;72(3 Pt 2):511–5.Google Scholar
Gershenson, DM, Del Junco, G, Herson, J, Rutledge, FN. Endodermal sinus tumor of the ovary: the M. D. Anderson experience. Obstet Gynecol. 1983;61(2):194202.Google Scholar
Talerman, A, Haije, WG, Baggerman, L. Serum alphafetoprotein (AFP) in diagnosis and management of endodermal sinus (yolk sac) tumor and mixed germ cell tumor of the ovary. Cancer. 1978;41(1):272–8.Google Scholar
Kawai, M, Furuhashi, Y, Kano, T et al. Alpha-fetoprotein in malignant germ cell tumors of the ovary. Gynecol Oncol. 1990;39(2):160–6.Google Scholar
Konishi, I, Fujii, S, Okamura, H, Sakahara, H, Endo, K, Torizuka, K, et al. Analysis of serum CA125, CEA, AFP, LDH levels and LDH isoenzymes in patients with ovarian tumors: correlation between tumor markers and histological types of ovarian tumors. Nihon Sanka Fujinka Gakkai Zasshi. 1986;38(6):827–36.Google Scholar
Prat, J, Oncology FCoG. FIGO’s staging classification for cancer of the ovary, fallopian tube, and peritoneum: abridged republication. J Gynecol Oncol. 2015;26(2):87–9.Google Scholar
Gershenson, DM. Management of ovarian germ cell tumors. J Clin Oncol. 2007;25(20):2938–43.Google Scholar
Gershenson, DM. Fertility-sparing surgery for malignancies in women. J Natl Cancer Inst Monogr. 2005(34):43–7.Google Scholar
Low, JJ, Perrin, LC, Crandon, AJ, Hacker, NF. Conservative surgery to preserve ovarian function in patients with malignant ovarian germ cell tumors. A review of 74 cases. Cancer. 2000;89(2):391–8.Google Scholar
Schwartz, PE, Chambers, SK, Chambers, JT, Kohorn, E, McIntosh, S. Ovarian germ cell malignancies: the Yale University experience. Gynecol Oncol. 1992;45(1):2631.Google Scholar
Perrin, LC, Low, J, Nicklin, JL, Ward, BG, Crandon, AJ. Fertility and ovarian function after conservative surgery for germ cell tumours of the ovary. Aust N Z J Obstet Gynaecol. 1999;39(2):243–5.Google Scholar
Slayton, RE, Park, RC, Silverberg, SG, Shingleton, H, Creasman, WT, Blessing, JA. Vincristine, dactinomycin, and cyclophosphamide in the treatment of malignant germ cell tumors of the ovary. A Gynecologic Oncology Group Study (a final report). Cancer. 1985;56(2):243–8.Google Scholar
Billmire, D, Vinocur, C, Rescorla, F et al. Outcome and staging evaluation in malignant germ cell tumors of the ovary in children and adolescents: an intergroup study. J Pediatr Surg. 2004;39(3):424–9 (9).Google Scholar
Ertas, IE, Taskin, S, Goklu, R et al. Long-term oncological and reproductive outcomes of fertility-sparing cytoreductive surgery in females aged 25 years and younger with malignant ovarian germ cell tumors. J Obstet Gynaecol Res. 2014;40(3):797805.Google Scholar
Park, JY, Kim, DY, Suh, DS et al. Outcomes of pediatric and adolescent girls with malignant ovarian germ cell tumors. Gynecol Oncol. 2015;137(3):418–22.Google Scholar
Yoo, SC, Kim, WY, Yoon, JH, Chang, SJ, Chang, KH, Ryu, HS. Young girls with malignant ovarian germ cell tumors can undergo normal menarche and menstruation after fertility-preserving surgery and adjuvant chemotherapy. Acta Obstet Gynecol Scand. 2010;89(1):126–30.Google Scholar
Billmire, DF. Malignant germ cell tumors in childhood. Semin Pediatr Surg. 2006;15(1):30–6.Google Scholar
Williams, SD, Blessing, JA, Moore, DH, Homesley, HD, Adcock, L. Cisplatin, vinblastine, and bleomycin in advanced and recurrent ovarian germ-cell tumors. A trial of the Gynecologic Oncology Group. Ann Int Med. 1989;111(1):22–7.Google Scholar
Bafna, UD, Umadevi, K, Kumaran, C, Nagarathna, DS, Shashikala, P, Tanseem, R. Germ cell tumors of the ovary: is there a role for aggressive cytoreductive surgery for nondysgerminomatous tumors? Int J Gynecol Cancer. 2001;11(4):300304.Google Scholar
Williams, SD, Blessing, JA, DiSaia, PJ, Major, FJ, Ball, HG III, Liao, SY. Second-look laparotomy in ovarian germ cell tumors: the Gynecologic Oncology Group experience. Gynecol Oncol. 1994;52(3):287–91.Google Scholar
Gershenson, DM. Chemotherapy of ovarian germ cell tumors and sex cord stromal tumors. Semin Surg Oncol. 1994;10(4):290–8.Google Scholar
Billmire, DF, Cullen, JW, Rescorla, FJ et al. Surveillance after initial surgery for pediatric and adolescent girls with stage I ovarian germ cell tumors: report from the Children’s Oncology Group. J Clin Oncol. 2014;32(5):465–70.Google Scholar
Dark, GG, Bower, M, Newlands, ES, Paradinas, F, Rustin, GJ. Surveillance policy for stage I ovarian germ cell tumors. J Clin Oncol. 1997;15(2):620–4.Google Scholar
Patterson, DM, Murugaesu, N, Holden, L, Seckl, MJ, Rustin, GJ. A review of the close surveillance policy for stage I female germ cell tumors of the ovary and other sites. Int J Gynecol Cancer. 2008;18(1):4350.Google Scholar
Mangili, G, Sigismondi, C, Lorusso, D, Pignata, S. Surveillance policy for stage IA malignant ovarian germ cell tumors in children and young adults. J Clin Oncol. 2014;32(25):2814–5.Google Scholar
Gershenson, DM, Morris, M, Cangir, A et al. Treatment of malignant germ cell tumors of the ovary with bleomycin, etoposide, and cisplatin. J Clin Oncol. 1990;8(4):715–20.Google Scholar
Williams, S, Blessing, JA, Liao, SY, Ball, H, Hanjani, P. Adjuvant therapy of ovarian germ cell tumors with cisplatin, etoposide, and bleomycin: a trial of the Gynecologic Oncology Group. J Clin Oncol. 1994;12(4):701–6.Google Scholar
Mann, JR, Raafat, F, Robinson, K et al. The United Kingdom Children’s Cancer Study Group’s second germ cell tumor study: carboplatin, etoposide, and bleomycin are effective treatment for children with malignant extracranial germ cell tumors, with acceptable toxicity. J Clin Oncol. 2000;18(22):3809–18.Google Scholar
Doi, M, Okamoto, Y, Yamauchi, M, Naitou, H, Shinozaki, K. Bleomycin-induced pulmonary fibrosis after tumor lysis syndrome in a case of advanced yolk sac tumor treated with bleomycin, etoposide and cisplatin (BEP) chemotherapy. Int J Clin Oncol. 2012;17(5):528–31.Google Scholar
O’Sullivan, JM, Huddart, RA, Norman, AR, Nicholls, J, Dearnaley, DP, Horwich, A. Predicting the risk of bleomycin lung toxicity in patients with germ-cell tumours. Ann Oncol. 2003;14(1):91–6.Google Scholar
Usman, M, Faruqui, ZS, ud Din, N, Zahid, KF. Bleomycin induced pulmonary toxicity in patients with germ cell tumours. J Ayub Med Coll Abbottabad. 2010;22(3):35–7.Google Scholar
Buskirk, SJ, Schray, MF, Podratz, KC et al. Ovarian dysgerminoma: a retrospective analysis of results of treatment, sites of treatment failure, and radiosensitivity. Mayo Clin Proc. 1987;62(12):1149–57.Google Scholar
Mangili, G, Sigismondi, C, Gadducci, A et al. Outcome and risk factors for recurrence in malignant ovarian germ cell tumors: a MITO-9 retrospective study. Int J Gynecol Cancer. 2011;21(8):1414–21.Google Scholar
Murugaesu, N, Schmid, P, Dancey, G et al. Malignant ovarian germ cell tumors: identification of novel prognostic markers and long-term outcome after multimodality treatment. J Clin Oncol: Offic J Am Soc Clin Oncol. 2006;24(30):4862–6.Google Scholar
Solheim, O, Gershenson, DM, Trope, CG et al. Prognostic factors in malignant ovarian germ cell tumours (the surveillance, epidemiology and end results experience 1978–2010). Euro J Cancer. 2014;50(11):1942–50.Google Scholar
Weinberg, LE, Lurain, JR, Singh, DK, Schink, JC. Survival and reproductive outcomes in women treated for malignant ovarian germ cell tumors. Gynecol Oncol. 2011;121(2):285–9.Google Scholar
Loren, AW, Mangu, PB, Beck, LN et al. Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2013;31(19):25002510.Google Scholar
Simone, CG, Markham, MJ, Dizon, DS. Chemotherapy in ovarian germ cell tumors: a systematic review. Gynecol Oncol. 2016;141(3):602–607.Google Scholar

References

Bracken, M. B., Incidence and aetiology of hydatidiform mole: an epidemiological review. Br J Obstet Gynaecol, 1987. 94(12): p. 1123–35.Google Scholar
Palmer, J. R., Advances in the epidemiology of gestational trophoblastic disease. J Reprod Med, 1994. 39(3): p. 155–62.Google Scholar
Berkowitz, R. S. et al., Risk factors for complete molar pregnancy from a case-control study. Am J Obstet Gynecol, 1985. 152(8): p. 1016–20.Google Scholar
Parazzini, F. et al., Dietary factors and risk of trophoblastic disease. Am J Obstet Gynecol, 1988. 158(1): p. 93–9.Google Scholar
Parazzini, F. et al., Risk factors for gestational trophoblastic disease: a separate analysis of complete and partial hydatidiform moles. Obstet Gynecol, 1991. 78(6): p. 1039–45.Google Scholar
Berkowitz, R. S., Goldstein, D. P., and Bernstein, M. R., Evolving concepts of molar pregnancy. J Reprod Med, 1991. 36(1): p. 40–4.Google Scholar
Yamashita, K. et al., Human lymphocyte antigen expression in hydatidiform mole: androgenesis following fertilization by a haploid sperm. Am J Obstet Gynecol, 1979. 135(5): p. 597600.Google Scholar
Szulman, A. E. and Surti, U., The syndromes of hydatidiform mole. II. Morphologic evolution of the complete and partial mole. Am J Obstet Gynecol, 1978. 132(1): p. 20–7.Google Scholar
Berkowitz, R. S. and Goldstein, D. P., Gestational trophoblastic disease. Cancer, 1995. 76(10 Suppl): p. 2079–85.Google Scholar
Benson, C. B. et al., Sonographic appearance of first trimester complete hydatidiform moles. Ultrasound Obstet Gynecol, 2000. 16(2): p. 188–91.Google Scholar
Romero, R. et al., New criteria for the diagnosis of gestational trophoblastic disease. Obstet Gynecol, 1985. 66(4): p. 553–8.Google Scholar
Genest, D. R. et al., A clinicopathologic study of 153 cases of complete hydatidiform mole (1980–1990): histologic grade lacks prognostic significance. Obstet Gynecol, 1991. 78(3 Pt 1): p. 402–9.Google Scholar
Menczer, J., Modan, M., and Serr, D. M., Prospective follow-up of patients with hydatidiform mole. Obstet Gynecol, 1980. 55(3): p. 346–9.Google Scholar
Soto-Wright, V. et al., The changing clinical presentation of complete molar pregnancy. Obstet Gynecol, 1995. 86(5): p. 775–9.Google Scholar
Muminhodzic, L. and Bogdanovic, G., Ultrasonographic signs of partial hydatidiform mole. Med Arch, 2013. 67(3): p. 205–8.Google Scholar
Thaker, H. M. et al., Immunohistochemistry for the imprinted gene product IPL/PHLDA2 for facilitating the differential diagnosis of complete hydatidiform mole. J Reprod Med, 2004. 49(8): p. 630–6.Google Scholar
Sun, S. Y. et al., Changing presentation of complete hydatidiform mole at the New England Trophoblastic Disease Center over the past three decades: does early diagnosis alter risk for gestational trophoblastic neoplasia? Gynecol Oncol, 2015. 138(1): p. 46–9.Google Scholar
Osathanondh, R. et al., Hormonal measurements in patients with theca lutein cysts and gestational trophoblastic disease. J Reprod Med, 1986. 31(3): p. 179–83.Google Scholar
Seckl, M. J., Sebire, N. J., and Berkowitz, R. S., Gestational trophoblastic disease. Lancet, 2010. 376(9742): p. 717–29.Google Scholar
Berkowitz, R. S. and Goldstein, D. P., Chorionic tumors. N Engl J Med, 1996. 335(23): p. 1740–8.Google Scholar
Elias, K. M., Goldstein, D. P., and Berkowitz, R. S., Complete hydatidiform mole in women older than age 50. J Reprod Med, 2010. 55(5–6): p. 208–12.Google Scholar
Orr, J. W., Jr. et al., Acute pulmonary edema associated with molar pregnancies: a high-risk factor for development of persistent trophoblastic disease. Am J Obstet Gynecol, 1980. 136(3): p. 412–5.Google Scholar
Goldstein, D. P. and Berkowitz, R. S., Prophylactic chemotherapy of complete molar pregnancy. Semin Oncol, 1995. 22(2): p. 157–60.Google Scholar
Limpongsanurak, S., Prophylactic actinomycin D for high-risk complete hydatidiform mole. J Reprod Med, 2001. 46(2): p. 110–6.Google Scholar
Uberti, E. M. et al., Prevention of postmolar gestational trophoblastic neoplasia using prophylactic single bolus dose of actinomycin D in high-risk hydatidiform mole: a simple, effective, secure and low-cost approach without adverse effects on compliance to general follow-up or subsequent treatment. Gynecol Oncol, 2009. 114(2): p. 299305.Google Scholar
Curry, S. L. et al., Hydatidiform mole: diagnosis, management, and long-term followup of 347 patients. Obstet Gynecol, 1975. 45(1): p. 18.Google Scholar
Wolfberg, A. J. et al., Low risk of relapse after achieving undetectable HCG levels in women with partial molar pregnancy. Obstet Gynecol, 2006. 108(2): p. 393–6.Google Scholar
Kohorn, E. I., Persistent low-level “real” human chorionic gonadotropin: a clinical challenge and a therapeutic dilemma. Gynecol Oncol, 2002. 85(2): p. 315–20.Google Scholar
Curry, S. L. et al., Hormonal contraception and trophoblastic sequelae after hydatidiform mole (a Gynecologic Oncology Group Study). Am J Obstet Gynecol, 1989. 160(4): p. 805–9 (809–11).Google Scholar
Berkowitz, R. S. et al., Oral contraceptives and postmolar trophoblastic disease. Obstet Gynecol, 1981. 58(4): p. 474–7.Google Scholar
Costa, H. L. and Doyle, P., Influence of oral contraceptives in the development of post-molar trophoblastic neoplasia: a systematic review. Gynecol Oncol, 2006. 100(3): p. 579–85.Google Scholar
Gaffield, M. E., Kapp, N., and Curtis, K. M., Combined oral contraceptive and intrauterine device use among women with gestational trophoblastic disease. Contraception, 2009. 80(4): p. 363–71.Google Scholar
Pezeshki, M., B. W. Hancock, P. Silcocks, J. E. Everard, J. Coleman, A. M. Gillespie, J. Tidy, R. E. Coleman, The role of repeat uterine evacuation in the management of persistent gestational trophoblastic disease. Gynecol Oncol, 2004. 95(3): p. 423–9.Google Scholar
Dobson, L. S. et al., The presentation and management of post-partum choriocarcinoma. Br J Cancer, 1999. 79(9–10): p. 1531–3.Google Scholar
Milenkovic, V. and Lazovic, B., Pulmonary metastasis in patients with gestational trophoblastic disease. Int J Gynaecol Obstet, 2011. 112(2): p. 145.Google Scholar
Berry, E., Hagopian, G. S., and Lurain, J. R., Vaginal metastases in gestational trophoblastic neoplasia. J Reprod Med, 2008. 53(7): p. 487–92.Google Scholar
Cagayan, M. S., Vaginal metastases complicating gestational trophoblastic neoplasia. J Reprod Med, 2010. 55(5–6): p. 229–35.Google Scholar
Newlands, E. S. et al., Management of brain metastases in patients with high-risk gestational trophoblastic tumors. J Reprod Med, 2002. 47(6): p. 465–71.Google Scholar
Gillespie, A. M. et al., Placental site trophoblastic tumour: a rare but potentially curable cancer. Br J Cancer, 2000. 82(6): p. 1186–90.Google Scholar
Berkowitz, R. S., Goldstein, D. P., and Bernstein, M. R., Modified triple chemotherapy in the management of high-risk metastatic gestational trophoblastic tumors. Gynecol Oncol, 1984. 19(2): p. 173–81.Google Scholar
Alazzam, M. P. et al., First-line chemotherapy in low-risk gestational trophoblastic neoplasia, Cochrane Database Syst Rev, 2012. 7: p. CD007102.Google Scholar
Shah, N. T. et al., A cost analysis of first-line chemotherapy for low-risk gestational trophoblastic neoplasia. J Reprod Med, 2012. 57(5–6): p. 211–8.Google Scholar
Sekharan, P. K. et al., Management of postmolar gestational trophoblastic disease with methotrexate and folinic acid: 15 years of experience. J Reprod Med, 2006. 51(10): p. 835–40.Google Scholar
Feldman, S., Goldstein, D. P., and Berkowitz, R. S., Low-risk metastatic gestational trophoblastic tumors. Semin Oncol, 1995. 22(2): p. 166–71.Google Scholar
Newlands, E. S. et al., Management of resistant gestational trophoblastic tumors. J Reprod Med, 1998. 43(2): p. 111–8.Google Scholar
Bagshawe, K. D., Treatment of high-risk choriocarcinoma. J Reprod Med, 1984. 29(11): p. 813–20.Google Scholar
Evans, A. C., Jr. et al., Gestational trophoblastic disease metastatic to the central nervous system. Gynecol Oncol, 1995. 59(2): p. 226–30.Google Scholar
Cole, L. A., Phantom hCG and phantom choriocarcinoma. Gynecol Oncol, 1998. 71(2): p. 325–9.Google Scholar
Cole, L. A., hCG, its free subunits and its metabolites: roles in pregnancy and trophoblastic disease. J Reprod Med, 1998. 43(1): p. 310.Google Scholar
Goldstein, D. P., Zanten-Przybysz, I., Bernstein, M. R., Berkowitz, R. S., Revised FIGO staging system for gesational trophoblastic tumors; recommendations regarding therapy. J Reprod Med, 1998. 43: p. 2743.Google Scholar
Berkowitz, R. S. and Goldstein, D. P., Current management of gestational trophoblastic diseases. Gynecol Oncol 2009;112: p. 654–62.Google Scholar
Matsui, H., Iitsuka, Y., Suzuka, K et al., Early pregnancy outcomes after chemotherapy for gestational trophoblastic tumor. J Reprod Med 2004;49:531–4.Google Scholar
Garrett, L.A. et al., Subsequent pregnancy outcomes in patients with molar pregnancy and persistent gestational trophoblastic neoplasia. J Reprod Med, 2008. 53(7): p. 481–6.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×