Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T17:11:55.680Z Has data issue: false hasContentIssue false

28 - Optimization of 2D and 3D Radiographic Imaging Systems

from Part VI - Applied Perception

Published online by Cambridge University Press:  20 December 2018

Ehsan Samei
Affiliation:
Duke University Medical Center, Durham
Elizabeth A. Krupinski
Affiliation:
Emory University, Atlanta
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonuk, L.E., El-Mohri, Y., Siewerdsen, J.H., et al. (1997). Empirical investigation of the signal performance of a high-resolution, indirect detection, active matrix flat-panel imager (AMFPI) for fluoroscopic and radiographic operation. Med Phys, 24(1), 5170.CrossRefGoogle ScholarPubMed
Antonuk, L.E., Jee, K.W., El-Mohri, Y., et al. (2000). Strategies to improve the signal and noise performance of active matrix, flat-panel imagers for diagnostic X-ray applications. Med Phys, 27(2), 289306.Google Scholar
Antonuk, L.E., Zhao, Q., Su, Z., et al. (2004). Systematic development of input-quantum-limited fluoroscopic imagers based on active-matrix flat-panel technology. Proc SPIE Med Imag, 5368, 127138.CrossRefGoogle Scholar
Bachar, G., Siewerdsen, J.H., Daly, M.J., Jaffray, D.A., Irish, J.C. (2007). Image quality and localization accuracy in C-arm tomosynthesis-guided head and neck surgery. Med Phys, 34(12), 46644677.CrossRefGoogle ScholarPubMed
Badano, A., Kyprianou, I.S., Jennings, R.J., Sempau, J. (2007). Anisotropic imaging performance in breast tomosynthesis. Med Phys, 34(11), 40764091.CrossRefGoogle ScholarPubMed
Barten, P.G.J. (1999). Contrast Sensitivity of the Human Eye and its Effect on Image Quality. Bellingham, WA: SPIE Publications.Google Scholar
Bartling, S.H., Majdani, O., Gupta, R., et al. (2007). Large scan field, high spatial resolution flat-panel detector based volumetric CT of the whole human skull base and for maxillofacial imaging, Dentomaxillofac Radiol, 36(6), 317327.CrossRefGoogle ScholarPubMed
Bissonnette, J.P., Cunningham, I.A., Jaffray, D.A., Fenster, A., Munro, P. (1997). A quantum accounting and detective quantum efficiency analysis for video-based portal imaging. Med Phys, 24(6), 815826.CrossRefGoogle ScholarPubMed
Boone, J.M., Lindfors, K.K. (2006). Breast CT: potential for breast cancer screening and diagnosis. Future Oncol, 2(3), 351356.Google Scholar
Boone, J.M., Seibert, J.A. (1997). An accurate method for computer-generating tungsten anode X-ray spectra from 30 to 140 kV. Med Phys, 24(11), 16611670.Google Scholar
Boyce, S.J., Chawla, A., Samei, E. (2005). Physical evaluation of a high frame rate, extended dynamic range flat panel detector for real-time cone beam computed tomography applications. Proc SPIE Med Imag, 5745, 591598.Google Scholar
Burgess, A.E. (1994). Statistically defined backgrounds: performance of a modified nonprewhitening observer model. J Opt Soc Am A, 11(4), 12371242.Google Scholar
Burgess, A.E., Jacobson, F.L., Judy, P.F. (2001). Human observer detection experiments with mammograms and power-law noise. Med Phys, 28(4), 419437.Google Scholar
Bushberg, J.T., Seibert, J.A., Leidholdt, E.M., Boone, J.M. (2002). The Essential Physics of Medical Imaging. Hagerstown, MD: Lippincott Williams and Wilkins.Google Scholar
Cahn, R.N., Cederstrom, B., Danielsson, M., et al. (1999). Detective quantum efficiency dependence on X-ray energy weighting in mammography. Med Phys, 26(12), 26802683.Google Scholar
Cunningham, I.A., Westmore, M.S., Fenster, A. (1994). A spatial-frequency dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems. Med Phys, 21(3), 417427.CrossRefGoogle ScholarPubMed
del Risco Norrlid, L., Edling, F., Fransson, K., et al. (2005). Simulation of the detective quantum efficiency for a hybrid pixel detector. Nucl Inst Meth Phys Res A, 543, 528536.Google Scholar
Dobbins, J.T., III, Godfrey, D.J. (2003). Digital X-ray tomosynthesis: current state of the art and clinical potential. Phys Med Biol, 48(19), R65–R106.Google Scholar
Fahrig, R., Holdsworth, D.W. (2000). Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: image-based correction of gantry motion nonidealities. Med Phys, 27 (1), 3038.Google Scholar
Feldkamp, L.A., Davis, L.C., Kress, J.W. (1984). Practical cone-beam algorithm. J Opt Soc Am A, 1, 612619.Google Scholar
Fewell, T.R., Shuping, R.E. (1977). Photon energy distribution of some typical diagnostic X-ray beams. Med Phys, 4(3), 187197.Google Scholar
Fujita, H., Tsai, D., Itoh, T., et al. (1992). A simple method for determining the modulation transfer function in digital radiography. IEEE Trans Med Imag, 11(1), 3439.Google Scholar
Gallas, B.D., Boswell, J.S., Badano, A., Gagne, R.M., Myers, K.J. (2004). An energy- and depth-dependent model for X-ray imaging. Med Phys, 31(11), 31323149.Google Scholar
Ganguly, A., Rudin, S., Bednarek, D.R., Hoffmann, K.R. (2003). Micro-angiography for neuro-vascular imaging. II. Cascade model analysis. Med Phys, 30(11), 30293039.Google Scholar
Hanson, K.M. (1979). Detectability in computed tomographic images. Med Phys, 6(5), 441451.Google Scholar
Hendee, W.R., Ritenour, E.R. (2002). Medical Imaging Physics, 4th ed. Hoboken, NJ: John Wiley.Google Scholar
Hunt, D.C., Kirby, S.S., Rowlands, J.A. (2002). X-ray imaging with amorphous selenium: X-ray to charge conversion gain and avalanche multiplication gain. Med Phys, 29(11), 24642471.CrossRefGoogle ScholarPubMed
ICRU. (1996). ICRU Report 54. Medical Imaging – The Assessment of Image Quality. Bethesda, MD: International Commission on Radiation Units and Measurements.Google Scholar
IEC Committee 62B. (2003). IEC 62220–1 Medical Electrical Equipment Characteristics of Digital X-Ray Imaging Devices: Part 1. Determination of the Detective Quantum Efficiency. Geneva, Switzerland: IEC.Google Scholar
Jaffray, D.A., Siewerdsen, J.H., Wong, J.W., Martinez, A.A. (2002). Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys, 53(5), 13371349.Google Scholar
Jarry, G., Graham, S.A., Moseley, D.J., et al. (2006). Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations. Med Phys, 33(11), 43204329.Google Scholar
Johns, H.E., Cunningham, J.R. (1983). The Physics of Radiology, 4th ed. Springfield, IL: Charles C. Thomas.Google Scholar
Johns, P.C., Yaffe, M.J. (1985). Theoretical optimization of dual-energy X-ray imaging with application to mammography. Med Phys, 12(3), 289296.Google Scholar
Kalender, W., Klotz, E., Kostaridou, L. (1988). An algorithm for noise suppression in dual-energy CT material density images. IEEE Trans Med Imag, 7, 218224.Google Scholar
Maidment, A.D.A., Ullberg, C., Lindman, K., et al. (2006). Evaluation of a photon-counting breast tomosynthesis imaging system. Proc SPIE Phys Med Imag, 6142, 61420B-1–61420B-11.Google Scholar
Metheany, K., Boone, J.M., Abbey, C.K., Packard, N. (2007). A comparison of anatomical noise properties between breast CT and projection breast imaging. Med Phys, 34(6), 2563.Google Scholar
Metz, C.E. (1978). Basic principles of ROC analysis. Semin Nucl Med, 8(4), 283298.Google Scholar
Nishikawa, R.M., Engstrom, E., Reiser, I. (2007). Comparison of the breast tissue power spectrum for mammograms, tomosynthesis projection images, and tomosynthesis reconstruction images. Annual Meeting of the Radiological Society of North America (RSNA).Google Scholar
Rafferty, E.A. (2007). Digital mammography: novel applications. Radiol Clin N Am, 45(5), 831843, vii.Google Scholar
Rafferty, M.A., Siewerdsen, J.H., Chan, Y., et al. (2006). Intraoperative cone-beam CT for guidance of temporal bone surgery. Otolaryngol Head Neck Surg, 134 (5), 801808.Google Scholar
Richard, S., Siewerdsen, J.H. (2007). Optimization of dual-energy imaging systems using generalized NEQ and imaging task. Med Phys, 34(1), 127139.Google Scholar
Richard, S., Siewerdsen, J.H., Jaffray, D., Moseley, D.J., Bakhtiar, B. (2005a). Generalized DQE analysis of radiographic and dual-energy imaging using flat-panel detectors. Med Phys, 32, 13971413.Google Scholar
Richard, S., Siewerdsen, J.H., Jaffray, D.A., Moseley, D.J., Bakhtiar, B. (2005b). Generalized DQE analysis of dual-energy imaging using flat-panel detectors. Proc SPIE Phys Med Imag, 5745, 519528.CrossRefGoogle Scholar
Riederer, S.J., Pelc, N.J., Chesler, D.A. (1978). The noise power spectrum in computed X-ray tomography. Phys Med Biol, 23(3), 446454.Google Scholar
Roehrig, H., Fajardo, L.L., Yu, T., Schempp, W.S. (1994). Signal, noise and detective quantum efficiency in CCD based X-ray imaging systems for use in mammography. Proc SPIE Phys Med Imag, 2163, 320332.Google Scholar
Rose, A. (1948). The sensitivity performance of the human eye on an absolute scale. J Opt Soc Am, 38, 196208.Google Scholar
Rowlands, J.A. (1996). Digital X-ray systems based on amorphous selenium. AJR Am J Roentgenol, 167(2), 409411.CrossRefGoogle ScholarPubMed
Sawant, A., Antonuk, L.E., El-Mohri, Y., et al. (2006). Segmented crystalline scintillators: empirical and theoretical investigation of a high quantum efficiency EPID based on an initial engineering prototype CsI(Tl) detector. Med Phys, 33, 10531066.CrossRefGoogle Scholar
Shkumat, N.A., Siewerdsen, J.H., Dhanantwari, A.C., et al. (2007). Optimization of image acquisition techniques for dual-energy imaging of the chest. Med Phys, 34(10), 586601.CrossRefGoogle ScholarPubMed
Siewerdsen, J.H., Antonuk, L.E. (1998). DQE and system optimization for indirect-detection flat-panel imagers in diagnostic radiology. Proc SPIE Phys Med Imag, 3336, 546555.Google Scholar
Siewerdsen, J.H., Jaffray, D.A. (2000a). Cone-beam CT with a flat-panel imager: noise considerations for fully 3D computed tomography. Proc SPIE Phys Med Imag, 3977, 408416.Google Scholar
Siewerdsen, J.H., Jaffray, D.A. (2000b). Optimization of X-ray imaging geometry (with specific application to flat-panel cone-beam computed tomography). Med Phys, 27(8), 19031914.Google Scholar
Siewerdsen, J.H., Jaffray, D.A. (2001). Cone-beam computed tomography with a flat-panel imager: magnitude and effects of X-ray scatter. Med Phys, 28(2), 220231.Google Scholar
Siewerdsen, J.H., Jaffray, D.A. (2003). Three-dimensional NEQ transfer characteristics of volume CT using direct and indirect-detection flat-panel imagers. Proc SPIE Phys Med Imag, 29(11), 26552671.Google Scholar
Siewerdsen, J.H., Antonuk, L.E., El-Mohri, Y., et al. (1997). Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology. Med Phys, 24(1), 7189.Google Scholar
Siewerdsen, J.H., Moseley, D.J., Bakhtiar, B., Richard, S., Jaffray, D.A. (2004a). The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors. Med Phys, 31(12), 35063520.Google Scholar
Siewerdsen, J.H., Moseley, D.J., Jaffray, D.A. (2004b). Incorporation of task in 3D imaging performance evaluation: the impact of asymmetric NPS on detectability. Proc SPIE Phys Med Imag, 5368, 8997.Google Scholar
Siewerdsen, J.H., Waese, A.M., Moseley, D.J., Richard, S., Jaffray, D.A. (2004c). Spektr: a computational tool for X-ray spectral analysis and imaging system optimization. Med Phys, 31(11), 30573067.Google Scholar
Siewerdsen, J.H., Moseley, D.J., Burch, S., et al. (2005). Volume CT with a flat-panel detector on a mobile, isocentric C-arm: pre-clinical investigation in guidance of minimally invasive surgery. Med Phys, 32(1), 241254.Google Scholar
Silverman, J.D., Paul, N.S., Siewerdsen, J.H. (2009). Investigation of lung nodule detectability in low-dose 320-slice computed tomography. Med Phys, 26, 17001710.Google Scholar
Spies, L., Ebert, M., Groh, B.A., Hesse, B.M., Bortfeld, T. (2001). Correction of scatter in megavoltage cone-beam CT. Phys Med Biol, 46(3), 821833.Google Scholar
Swank, R.K. (1973). Absorption and noise in X-ray phosphors. J Appl Phys, 44(9), 41994203.Google Scholar
Tucker, D.M., Barnes, G.T., Chakraborty, D.P. (1991). Semiempirical model for generating tungsten target X-ray spectra. Med Phys, 18(2), 211218.Google Scholar
Tutar, I.B., Managuli, R., Shamdasani, V., et al. (2003). Tomosynthesis-based localization of radioactive seeds in prostate brachytherapy. Med Phys, 30(12), 31353142.Google Scholar
Vedantham, S., Karellas, A., Suryanarayanan, S. (2004). Solid-state fluoroscopic imager for high-resolution angiography: parallel-cascaded linear systems analysis. Med Phys, 31(5), 12581268.CrossRefGoogle ScholarPubMed
Warp, R.J., Dobbins, J.T., III. (2003). Quantitative evaluation of noise reduction strategies in dual-energy imaging. Med Phys, 30(2), 190198.Google Scholar
Yao, J., Cunningham, I.A. (2001). Parallel cascades: new ways to describe noise transfer in medical imaging systems. Med Phys, 28(10), 20202038.Google Scholar
Zhao, W., Rowlands, J.A. (1997). Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency. Med Phys, 24(12), 18191833.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×