Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-26T13:35:09.791Z Has data issue: false hasContentIssue false

7 - Sociality in Spiders

from Part I - Invertebrates

Published online by Cambridge University Press:  13 April 2017

Dustin R. Rubenstein
Affiliation:
Columbia University, New York
Patrick Abbot
Affiliation:
Vanderbilt University, Tennessee
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnarsson, I. (2006) A revision of the New World eximius lineage of Anelosimus (Araneae, Theridiidae) and a phylogenetic analysis using worldwide exemplars. Zoological Journal of the Linnean Society, 146, 453593.CrossRefGoogle Scholar
Agnarsson, I., Avilés, L., Coddington, J., & Maddison, W. (2006) Sociality in Theridiid spiders: Repeated origins of an evolutionary dead end. Evolution, 60, 23422351.CrossRefGoogle ScholarPubMed
Agnarsson, I., Maddison, W. P., & Avilés, L. (2010) Complete separation along matrilines in a social spider metapopulation inferred from hypervariable mitochondrial DNA region. Molecular Ecology, 19, 30523063.CrossRefGoogle Scholar
Agnarsson, I., Avilés, L., & Maddison, W. P. (2013) Loss of genetic variability in social spiders: Genetic and phylogenetic consequences of population subdivision and inbreeding. Journal of Evolutionary Biology, 26, 2737.CrossRefGoogle ScholarPubMed
Agnarsson, I., Gotelli, N. J., Agostini, D., & Kuntner, M. (2015) Limited role of character displacement in the coexistence of congeneric Anelosimus spiders in a Madagascan montane forest. Ecography, 38, 001011.Google Scholar
Amir, N., Whitehouse, M. E. A., & Lubin, Y. (2000) Food consumption rates and competition in a communally feeding social spider, Stegodyphus dumicola (Eresidae) Journal of Arachnology, 28, 195200.CrossRefGoogle Scholar
Avilés, L. (1993a) Interdemic selection and the sex-ratio - a social spider perspective. American Naturalist, 142, 320345.CrossRefGoogle Scholar
Avilés, L. (1993b) Newly-discovered sociality in the neotropical spider Aebutina binotata Simon (Dictynidae) Journal of Arachnology, 21, 184193.Google Scholar
Avilés, L. (1994) Social behavior in a web-building lynx spider, Tapinillus sp (Araneae, Oxyopidae). Biological Journal of the Linnean Society, 52, 163176.CrossRefGoogle Scholar
Avilés, L. (1997) Causes and consequences of cooperation and permanent-sociality in spiders. In: Choe, J. C. & Crespi, B. J. (eds.) Evolution of Social Behavior in Insects and Arachnids. Cambridge, MA: Cambridge University Press, pp. 476498.CrossRefGoogle Scholar
Avilés, L. (1999) Cooperation & non-linear dynamics: An ecological perspective on the evolution of sociality. Evolutionary Ecology Research, 1, 459477.Google Scholar
Avilés, L. (2000) Nomadic behaviour and colony fission in a cooperative spider: Life history evolution at the level of the colony? Biological Journal of the Linnean Society, 70, 325339.CrossRefGoogle Scholar
Avilés, L. & Bukowski, T. C. (2006) Group living and inbreeding depression in a subsocial spider. Proceedings of the Royal Society of London B, 273, 157163.Google Scholar
Avilés, L. & Gelsey, G. (1998) Natal dispersal and demography of a subsocial Anelosimus species and its implications for the evolution of sociality in spiders. Canadian Journal of Zoology, 76, 21372147.CrossRefGoogle Scholar
Avilés, L. & Harwood, G. (2012) A quantitative index of sociality and its application to group-living spiders and other social organisms. Ethology, 118, 12191229.CrossRefGoogle ScholarPubMed
Avilés, L. & Maddison, W. (1991) When is the sex ratio biased in social spiders?: Embryo and male meiosis chromosome studies in Anelosimus spp. Journal of Arachnology, 19, 126135.Google Scholar
Avilés, L. & Purcell, J. (2012) The evolution of inbred social systems in spiders and other organisms: From short-term gains to long-term evolutionary dead ends?. Advances in the Study of Behavior, 44, 99133.CrossRefGoogle Scholar
Avilés, L. & Salazar, P. (1999) Notes on the social structure, life cycle, and behavior of Anelosimus rupununi. Journal of Arachnology, 27, 497502.Google Scholar
Avilés, L. & Tufiño, P. (1998) Colony size and individual fitness in the social spider Anelosimus eximius. The American Naturalist, 152, 403418.CrossRefGoogle ScholarPubMed
Avilés, L., Maddison, W. P., Salazar, P. A., Estevez, G., Tufino, P., & Cañas, G. (2001) Social spiders of the Ecuadorian Amazonia, with notes on six previously undescribed social species, Revista Chilena De Historia Natural, 74, 619638.Google Scholar
Avilés, L., Maddison, W., & Agnarsson, I. (2006) A new independently derived social spider with explosive colony proliferation and a female size dimorphism. Biotropica, 38, 743753.CrossRefGoogle Scholar
Avilés, L., Agnarsson, I., Salazar, P. A., Purcell, J., Iturralde, G., et al. (2007) Natural history miscellany - Altitudinal patterns of spider sociality and the biology of a new midelevation social Anelosimus species in Ecuador. The American Naturalist, 170, 783792.CrossRefGoogle Scholar
Berger-Tal, R., Berner-Aharon, N., Aharon, S., Cristina Tuni, C., & Lubin, Y. (2016). Good reasons to leave home: proximate dispersal cues in a social spider. Journal of Animal Ecology, 85, 10351042.CrossRefGoogle Scholar
Bernard, A. & Krafft, B. (2002) Silk attraction: Base of group cohesion and collective behaviours in social spiders. Comptes Rendus Biologies, 325, 11531157.CrossRefGoogle Scholar
Bilde, T., Coates, K. S., Birkhofer, K., et al. (2007) Survival benefits select for group living in a social spider despite reproductive costs. Journal of Evolutionary Biology, 20, 24122426.CrossRefGoogle Scholar
Bilde, T., Lubin, Y., Smith, D., Schneider, J. M., Maklakov, A. A. (2005) The transition to social inbred mating systems in spiders: Role of inbreeding tolerance in a subsocial predecessor. Evolution, 59, 160174.Google Scholar
Bilde, T. & Lubin, Y. (2011) Group living in spiders: Cooperative breeding and coloniality. In: Herberstein, M.E. (ed.) Spider Behavior, Flexibility and Versatility. New York: Cambridge University, pp. 275307.CrossRefGoogle Scholar
Bilde, T., Lubin, Y., Smith, D., Schneider, J., & Maklakov, A. (2005) The transition to social inbred mating systems in spiders: Role of inbreeding tolerance in a subsocial predecessor. Evolution, 59, 160174.Google Scholar
Binford, G. J. & Rypstra, A. L. (1992) Foraging behavior of the communal spider, Philoponella-republicana (Araneae, Uloboridae). Journal of Insect Behavior, 5, 321335.CrossRefGoogle Scholar
Bowden, K. (1991) The evolution of sociality in the spitting spider, Scytodes-fusca (Araneae, Scytodidae): Evidence from observations of intraspecific interactions. Journal of Zoology, 223, 161172.CrossRefGoogle Scholar
Breitwisch, R. (1989) Prey capture by a West-African social spider (Uloboridae, Philoponella sp). Biotropica, 21, 359363.CrossRefGoogle Scholar
Brett, R. A. (1991) The population structure of naked mole-rat colonies. In: Sherman, P.W., Jarvis, J. U. M., & Alexander, R.D. (eds.) The Biology of the Naked Mole-Rat. Princeton: Princeton University Press, pp. 97136.Google Scholar
Buschinger, A. (1989) Evolution, speciation, and inbreeding in the parasitic ant genus Epimyrma (Hymenoptera, Formicidae). Journal of Evolutionary Biology, 2, 265283.CrossRefGoogle Scholar
Buskirk, R. E. (1975) Coloniality, activity patterns and feeding in a tropical orb-weaving spider. Ecology, 56, 13141328.CrossRefGoogle Scholar
Chapman, T. W., Crespi, B. J., Kranz, B. D., & Schwarz, M. P. (2000) High relatedness and inbreeding at the origin of eusociality in gall-inducing thrips. Proceedings of the National Academy of Sciences USA, 97, 16481650.CrossRefGoogle ScholarPubMed
Corcobado, G., Rodriguez-Girones, M. A., Moya-Larano, J., & Avilés, L. (2012) Sociality level correlates with dispersal ability in spiders. Functional Ecology, 26, 794803.CrossRefGoogle Scholar
Crouch, T. & Lubin, Y. (2000) Effects of climate and prey availability on foraging in a social spider, Stegodyphus mimosarum (Araneae, Eresidae). Journal of Arachnology, 28, 158168.CrossRefGoogle Scholar
Crouch, T. & Lubin, Y. (2001) Population stability and extinction in a social spider Stegodyphus mimosarum (Araneae: Eresidae). Biological Journal of the Linnean Society, 72, 409417.CrossRefGoogle Scholar
Darchen, R. (1967) Une nouvelle araignée sociale du Gabon Agelena republicana Darchen (Aranéide labidognathe). Biologia Gabonica, 3, 3142.Google Scholar
Duncan, S. I., Riechert, S. E., Fitzpatrick, B. M., & Fordyce, J. A. (2010) Relatedness and genetic structure in a socially polymorphic population of the spider Anelosimus studiosus. Molecular Ecology, 19, 810818.CrossRefGoogle Scholar
D’Andrea, M. (1987) Social behavior in spiders (Arachnida, Araneae). Italian Journal of Zoology, Monograph, 3, 1156.Google Scholar
Ebert, D. (1998) Behavioral asymmetry in relation to body weight and hunger in the tropical social spider Anelosimus eximius (Araneae, Theridiidae). Journal of Arachnology, 26, 7080.Google Scholar
Emlen, S. T. (1982) The evolution of helping. I. An ecological constraints model. The American Naturalist, 119, 2939.CrossRefGoogle Scholar
Evans, T. (1998) Factors influencing the evolution of social behaviour in Australian crab spiders (Araneae: Thomisidae). Biological Journal of the Linnean Society, 63, 205219.CrossRefGoogle Scholar
Evans, T. & Goodisman, M. (2002) Nestmate relatedness and population genetic structure of the Australian social crab spider Diaea ergandros (Araneae: Thomisidae). Molecular Ecology, 11, 23072316.CrossRefGoogle ScholarPubMed
Evans, T. A. & Main, B. Y. (1993) Attraction between social crab spiders - silk pheromones in Diaea-socialis. Behavioral Ecology, 4, 99105.CrossRefGoogle Scholar
Evans, T. A., Wallis, E. J., & Elgar, M. A. (1995) Making a meal of mother. Nature, 376, 299299.CrossRefGoogle Scholar
Fernández-Campón, F. (2007) Group foraging in the colonial spider Parawixia bistriata (Araneidae): Effect of resource levels and prey size. Animal Behaviour, 74, 15511562.CrossRefGoogle Scholar
Fernández-Campón, F. (2010) Cross-habitat variation in the phenology of a colonial spider: Insights from a reciprocal transplant study. Naturwissenschaften, 97, 279289.CrossRefGoogle Scholar
Fisher, R. A. (1930) The Genetical Theory of Natural Selection. Dover, New York.CrossRefGoogle Scholar
Fowler, H. G. & Diehl, J. (1978) Biology of a Paraguayan colonial orb-weaver, Eriophora bistriata (Rengger) (Araneae, Araneidae). Bulletin of the British Arachnological Society, 4, 241250.Google Scholar
Gonzaga, M. O. and Vasconcellos-Neto, J. (2001) Female body size, fecundity parameters and foundation of new colonies in Anelosimus jabaquara (Araneae, Theridiidae). Insectes Sociaux, 48, 94100.CrossRefGoogle Scholar
Grinsted, L., Bilde, T., & d’Ettorre, P. (2011) Cuticular hydrocarbons as potential kin recognition cues in a subsocial spider. Behavioral Ecology, 22, 11871194.CrossRefGoogle Scholar
Grinsted, L., Pruitt, J. N., Settepani, V., & Bilde, T. (2013) Individual personalities shape task differentiation in a social spider. Proceedings of the Royal Society of London B, 280, 20131407.Google Scholar
Grinsted, L., Breuker, C. J., & Bilde, T. (2014) Cooperative breeding favors maternal investment in size over number of eggs in spiders. Evolution, 68, 19611973.CrossRefGoogle ScholarPubMed
Guevara, J. & Avilés, L. (2007) Multiple techniques confirm elevational differences in insect size that may influence spider sociality. Ecology, 88, 20152023.CrossRefGoogle ScholarPubMed
Guevara, J. & Avilés, L. (2011) Sociality and resource use: Insights from a community of social spiders in Brazil. Behavioral Ecology, 22, 630638.CrossRefGoogle Scholar
Guevara, J. & Avilés, L. (2015) Ecological predictors of spider sociality in the Americas. Global Ecology and Biogeography, 24, 11811191.CrossRefGoogle Scholar
Gundermann, J. L., Horel, A., & Krafft, B. (1993) Experimental manipulations of social tendencies in the subsocial spider Coelotes-terrestris. Insectes Sociaux, 40, 219229.CrossRefGoogle Scholar
Hart, E. M. & Avilés, L. (2014) Reconstructing local population dynamics in noisy metapopulations: The role of random catastrophes and Allee effects. Plos ONE, 9, e110049.CrossRefGoogle ScholarPubMed
Harwood, G. & Avilés, L. (2013) Differences in group size and the extent of individual participation in group hunting may contribute to differential prey-size use among social spiders. Biology Letters, 9, 20130621.CrossRefGoogle ScholarPubMed
Henschel, J. R. (1998) Predation on social and solitary individuals of the spider Stegodyphus dumicola (Araneae, Eresidae). Journal of Arachnology, 26, 6169.Google Scholar
Hoffman, C. R. & Avilés, L. (2017). Rain, predators, and spider sociality: a manipulative experiment. Behavioral Ecology, in press.CrossRefGoogle Scholar
Hoogland, J. L. (1981) The evolution of coloniality in white-tailed and black-tailed prairie dogs (Sciuridae, Cynomyus leucurus and Cynomus ludovicianus). Ecology, 62, 252272.CrossRefGoogle Scholar
Jackson, R. R. (1977) Comparative studies of Dictyna and Mallos (Araneae:Dictynidae): III. Prey and feeding behavior. Psyche, 83, 267280.Google Scholar
Jackson, R. R., Nelson, X. J., & Salm, K. (2008) The natural history of Myrmarachne melanotarsa, a social ant-mimicking jumping spider. New Zealand Journal of Zoology, 35, 225235.CrossRefGoogle Scholar
Jakob, E. M. (2004) Individual decisions and group dynamics: Why pholcid spiders join and leave groups. Animal Behavior, 68, 920.CrossRefGoogle Scholar
Jarvis, J. U. M., Oriain, M. J., Bennet, N. C., & Sherman, P. W. (1994) Mammalian eusociality - a family affair. Trends in Ecology and Evolution, 9, 4751.CrossRefGoogle ScholarPubMed
Johannesen, J. & Lubin, Y. (2001) Evidence for kin-structured group founding and limited juvenile dispersal in the sub-social spider Stegodyphus lineatus (Araneae, Eresidae). Journal of Arachnology, 29, 413422.CrossRefGoogle Scholar
Johannesen, J., Hennig, A., Dommermuth, B., & Schneider, J. M. (2002) Mitochondrial DNA distributions indicate colony propagation by single matri-lineages in the social spider Stegodyphus dumicola (Eresidae). Biological Journal of the Linnean Society, 76, 591600.CrossRefGoogle Scholar
Johannesen, J., Lubin, Y., Smith, D., Bilde, T., & Schneider, J. (2007) The age and evolution of sociality in Stegodyphus spiders: A molecular phylogenetic perspective. Proceedings of the Royal Society of London B, 274, 231237.Google ScholarPubMed
Johannesen, J., Wickler, W., Seibt, U., & Moritz, R. F. A. (2009) Population history in social spiders repeated: Colony structure and lineage evolution in Stegodyphus mimosarum (Eresidae). Molecular Ecology, 18, 28122818.CrossRefGoogle ScholarPubMed
Johannesen, J., Wennmann, J. T., & Lubin, Y. (2012) Dispersal behaviour and colony structure in a colonial spider. Behavioral Ecology and Sociobiology, 66, 13871398.CrossRefGoogle Scholar
Jones, T. C. & Parker, P. G. (2000) Costs and benefits of foraging associated with delayed dispersal in the spider Anelosimus studiosus (Araneae, Theridiidae). Journal of Arachnology, 28, 6169.CrossRefGoogle Scholar
Jones, T. C., Riechert, S. E., Dalrymple, S. E., & Parker, P. G. (2007) Fostering model explains variation in levels of sociality in a spider system. Animal Behaviour, 73, 195204.CrossRefGoogle Scholar
Kaspari, M., Alonso, L., & O’Donnell, S. (2000) Three energy variables predict ant abundance at a geographical scale. Proceedings of the Royal Society of London B, 267, 485489.CrossRefGoogle Scholar
Keiser, C. N., Jones, D. K., Modlmeier, A. P., & Pruitt, J. N. (2014) Exploring the effects of individual traits and within-colony variation on task differentiation and collective behavior in a desert social spider. Behavioral Ecology, 68, 839850.CrossRefGoogle Scholar
Keiser, C. N., Wright, C.M., & Pruitt, J. N. (2015) Warring arthropod societies: Social spider colonies can delay annihilation by predatory ants via reduced apparency and increased group size. Behavioral Processes, 119, 1421.CrossRefGoogle ScholarPubMed
Kim, K., Roland, C., & Horel, A. (2000) Functional value of matriphagy in the spider Amaurobius ferox. Ethology, 106, 729742.CrossRefGoogle Scholar
Kirkendall, L. R. (1983) The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae). Zoological Journal of the Linnean Society, 77, 293352.CrossRefGoogle Scholar
Kirkendall, L. R. (1993) Ecology and evolution of biased sex ratios in bark and ambrosia beetles. In: Wrench, D.L. & Ebbert, M.A. (eds.) Evolution and Diversity of Sex Ratio in Insects and Mites. New York: Chapman and Hall, pp. 235345.CrossRefGoogle Scholar
Krafft, B. & Pasquet, A. (1991) Synchronized and rhythmic activity during the prey capture in the social spider Anelosimus-eximius (Araneae, Theridiidae). Insectes Sociaux, 38, 8390.CrossRefGoogle Scholar
Kraus, O. & Kraus, M. (1988) The genus Stegodyphus (Arachnida, Araneae). Sibling species, species groups, and parallel origin of social living. Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg, 30, 151254.Google Scholar
Kraus, O. & Kraus, M. (1990) The genus Stegodyphus: Systematics, biogeography and sociality (Araneidae, Eresidae). Acta Zoologica Fennica, 190, 223228.Google Scholar
Krause, J. & Ruxton, G. (2002) Living in Groups. Oxford: Oxford University Press.CrossRefGoogle Scholar
Kullman, E. (1972) Evolution of social behavior in spiders. American Zoologist, 12, 419426.CrossRefGoogle Scholar
Leborgne, R., Cantarella, T. and Pasquet, A. (1998) Colonial life versus solitary life in Cyrtophora citricola (Araneae, Araneidae). Insectes Sociaux, 45, 125134.CrossRefGoogle Scholar
Lubin, Y. (1995) Is there division-of-labor in the social spider Achaearanea wau (Theridiidae). Animal Behaviour, 49, 13151323.CrossRefGoogle Scholar
Lubin, Y. & Bilde, T. (2007) The evolution of sociality in spiders. Advances in the Study of Behavior, 37, 83145.CrossRefGoogle Scholar
Lubin, Y. D. (1974) Adaptive advantages and evolution of colony formation in Cyrtophora (Araneae-Araneidae). Zoological Journal of the Linnean Society, 54, 321.CrossRefGoogle Scholar
Lubin, Y. D. & Crozier, R. H. (1985) Electrophoretic evidence for population differentiation in a social spider Achaearanea-wau (Theridiidae). Insectes Sociaux, 32, 297304.CrossRefGoogle Scholar
Lubin, Y. D. & Robinson, M. H. (1982) Dispersal by swarming in a social spider. Science, 216, 319321.CrossRefGoogle Scholar
Lubin, Y. D., Birkhofer, K., Berger-Tal, R., & Bilde, T. (2009) Limited male dispersal in a social spider with extreme inbreeding. Biological Journal of the Linnean Society, 97, 227234.CrossRefGoogle Scholar
Majer, M., Svenning, J. C., & Bilde, T. (2013) Habitat productivity constrains the distribution of social spiders across continents: Case study of the genus Stegodyphus. Frontiers in Zoology, 10, 9.CrossRefGoogle ScholarPubMed
Makarieva, A. M., Gorshkov, V. G., & Li, B. L. (2005) Temperature-associated upper limits to body size in terrestrial poikilotherms. Oikos, 111, 425436.CrossRefGoogle Scholar
Marques, E., Vasconcelos-Netto, J., & de Mello, M. (1998) Life history and social behavior of Anelosimus jabaquara and Anelosimus dubiosus (Araneae, Theridiidae). Journal of Arachnology, 26, 227237.Google Scholar
Masumoto, T. (1998) Cooperative prey capture in the communal web spider, Philoponella raffrayi (Araneae, Uloboridae). Journal of Arachnology, 26, 392396.Google Scholar
Mestre, L. & Lubin, Y. (2011) Settling where the food is: Prey abundance promotes colony formation and increases group size in a web-building spider. Animal Behaviour, 81, 741748.CrossRefGoogle Scholar
Miller, J. (2006) Web-sharing sociality and cooperative prey capture in a Malagasy spitting spider (Araneae: Scytodidae). Proceedings of the California Academy of Sciences, 57, 2538.Google Scholar
Mitchell, R. (1973) Growth and population dynamics of a spider mite (Tetranychus urticae K., Acarina: Tetranychidae). Ecology, 54, 13491355.CrossRefGoogle Scholar
Mockford, E.L. (1957) Life history studies on some Florida insects of the genus Archipsocus (Psocoptera). Bulletin of the Florida State Museum, Biological Sciences, 1, 253274.Google Scholar
Mori, K. & Saito, Y. (2005) Variation in social behavior within a spider mite genus, Stigmaeopsis (Acari: Tetranychidae). Behavioral Ecology, 16, 232238.CrossRefGoogle Scholar
Nentwig, W. (1985) Social spiders catch larger prey: A study of Anelosimus-eximius (Araneae, Theridiidae). Behavioral Ecology and Sociobiology, 17, 7985.CrossRefGoogle Scholar
New, T.R. (1973) The Archipsocidae of South America (Psocoptera). Transactions of the Royal Entomological Society of London, 125, 57105.CrossRefGoogle Scholar
Norton, R. A., Kethley, J. B., Johnston, D. E., & O’Connor, B. M. (1993) Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrench, D.L. & Ebbert, M.A. (eds.). Evolution and Diversity of Sex Ratio in Insects and Mites. New York: Chapman and Hall, pp. 899.CrossRefGoogle Scholar
Oster, G. F. & Wilson, E. O. (1978) Caste and Ecology in the Social Insects. Princeton University Press, Princeton.Google ScholarPubMed
Park, T. S., Namkung, J., & Choe, J. C. (1999) Life history of a colonial spider Philoponella prominens (Araneae: Uloboridae) in Korea. Korean Journal of Biological Sciences, 3, 167172.CrossRefGoogle Scholar
Pasquet, A., Trabalon, M., Bagneres, A. G., & Leborgne, R. (1997) Does group closure exist in the social spider Anelosimus eximius? Behavioural and chemical approach. Insectes Sociaux, 44, 159169.CrossRefGoogle Scholar
Powers, K. S. & Avilés, L. (2003) Natal dispersal patterns of a subsocial spider Anelosimus cf. jucundus (Theridiidae). Ethology, 109, 725737.CrossRefGoogle Scholar
Powers, K. S. & Avilés, L. (2007) The role of prey size and abundance in the geographical distribution of spider sociality. Journal of Animal Ecology, 76, 9951003.CrossRefGoogle ScholarPubMed
Pruitt, J. N. (2012) Behavioural traits of colony founders affect the life history of their colonies. Ecology Letters, 15, 10261032.CrossRefGoogle ScholarPubMed
Pruitt, J. N., Oufiero, C. E., Avilés, L., & Riechert, S. E. (2012) Iterative evolution of increased behavioral variation characterizes the transition to sociality in spiders and proves advantageous. The American Naturalist, 180, 496510.CrossRefGoogle ScholarPubMed
Purcell, J. (2011) Geographic patterns in the distribution of social systems in terrestrial arthropods. Biological Reviews, 86, 475491.CrossRefGoogle ScholarPubMed
Purcell, J. & Avilés, L. (2007) Smaller colonies and more solitary living mark higher elevation populations of a social spider. Journal of Animal Ecology, 76, 590597.CrossRefGoogle ScholarPubMed
Purcell, J. & Avilés, L. (2008) Gradients of precipitation and ant abundance may contribute to the altitudinal range limit of subsocial spiders: Insights from a transplant experiment. Proceedings of the Royal Society of London B, 275, 26172625.Google Scholar
Purcell, J., Vasconcellos-Neto, J., Gonzaga, M. O., Fletcher, J. A., & Avilés, L. (2012) Spatio-temporal differentiation and sociality in spiders. PLoS ONE, 7, e34592.CrossRefGoogle ScholarPubMed
Riechert, S. E. & Jones, T. C. (2008) Phenotypic variation in the social behaviour of the spider Anelosimus studiosus along a latitudinal gradient. Animal Behaviour, 75, 18931902.CrossRefGoogle Scholar
Riechert, S. E., Roeloffs, R., & Echternacht, A. C. (1986) The ecology of the cooperative spider Agelena-consociata in equatorial africa (Araneae, Agelenidae). Journal of Arachnology, 14, 175191.Google Scholar
Roeloffs, R. & Riechert, S. E. (1988) Dispersal and population-genetic structure of the cooperative spider, Agelena-consociata, in west-african rainforest. Evolution, 42, 173183.Google ScholarPubMed
Rolland, C., Danchin, E., & de Fraipont, M (1998) The evolution of coloniality in birds in relation to food, habitat, predation, and life-history traits: A comparative analysis. The American Naturalist, 151, 514529.CrossRefGoogle ScholarPubMed
Rowell, D. M. & Main, B. Y. (1992) Sex-ratio in the social spider Diaea-socialis (Araneae, Thomisidae). Journal of Arachnology, 20, 200206.Google Scholar
Ruch, J., Heinrich, L., Bilde, T., & Schneider, J. M. (2009) The evolution of social inbreeding mating systems in spiders: Limited male mating dispersal and lack of pre-copulatory inbreeding avoidance in a subsocial predecessor. Biological Journal of the Linnean Society, 98, 851859.CrossRefGoogle Scholar
Rypstra, A. L. (1979) Foraging flocks of spiders: Study of aggregate behavior in Cyrtophora-citricola forskal (Araneae, Araneidae) in West-Africa. Behavioral Ecology and Sociobiology, 5, 291300.CrossRefGoogle Scholar
Rypstra, A. L. (1990) Prey capture and feeding efficiency of social and solitary spiders: A comparison. Acta Zoologica Fennica, 190, 339343.Google Scholar
Rypstra, A. L. (1993) Prey size, social competition, and the development of reproductive division-of-labor in social spider groups. The American Naturalist, 142, 868880.CrossRefGoogle Scholar
Salomon, M. & Lubin, Y. (2007) Cooperative breeding increases reproductive success in the social spider Stegodyphus dumicola (Araneae, Eresidae). Behavioural Ecology and Sociobiology, 61, 17431750.CrossRefGoogle Scholar
Salomon, M., Sponarski, C., Larocque, A., & Avilés, L. (2010) Social organization of the colonial spider Leucauge sp in the Neotropics: Vertical stratification within colonies. Journal of Arachnology, 38, 446451.CrossRefGoogle Scholar
Samuk, K. & Avilés, L. (2013) Indiscriminate care of offspring predates the evolution of sociality in alloparenting social spiders. Behavioral Ecology and Sociobiology, 67, 12751284.CrossRefGoogle Scholar
Samuk, K. M., LeDue, E. E., & Avilés, L. (2012) Sister clade comparisons reveal reduced maternal care behavior in social cobweb spiders. Behavioral Ecology, 23, 3543.CrossRefGoogle Scholar
Schneider, J. M. (1995) Survival and growth in groups of a subsocial spider (Stegodyphus lineatus). Insectes Sociaux, 42, 237248.CrossRefGoogle Scholar
Schneider, J. (2002) Reproductive state and care giving in Stegodyphus (Araneae: Eresidae) and the implications for the evolution of sociality. Animal Behaviour, 63, 649658.CrossRefGoogle Scholar
Schneider, J. M. & Lubin, Y. (1996) Infanticidal male eresid spiders. Nature, 381, 655656.CrossRefGoogle Scholar
Schneider, J. M., Roos, J., Lubin, Y., & Henschel, J. R. (2001) Dispersal of Stegodyphus dumicola (Araneae, Eresidae): They do balloon after all! Journal of Arachnology, 29, 114116.CrossRefGoogle Scholar
Seibt, U. & Wickler, W. (1988) Bionomics and social structure of ‘Family spiders’ of the genus Stegodyphus, with special reference to the African species S. dumicola and S. mimosarum (Araneida, Eresidae). Verh. naturwiss. Ver. Hamburg, 30, 255303.Google Scholar
Settepani, V., Grinsted, L., Granfeldt, J., Jensen, J. L., & Bilde, T. (2013) Task specialization in two social spiders, Stegodyphus sarasinorum (Eresidae) and Anelosimus eximius (Theridiidae), Journal of Evolutionary Biology, 26, 5162.CrossRefGoogle ScholarPubMed
Settepani, V., Bechsgaard, J., & Bilde, T. (2014) Low genetic diversity and strong but shallow population differentiation suggests genetic homogenization by metapopulation dynamics in a social spider. Journal of Evolutionary Biology, 27, 28502855.CrossRefGoogle Scholar
Sharpe, R. V. & Avilés, L. (2016) Prey size and scramble vs. contest competition in a social spider: Implications for population dynamics. Journal of Animal Ecology, 85, 14011410.CrossRefGoogle Scholar
Simon, E. (1891) Observations biologiques sur les arachnides. Annales de la Societé Entomologique Française, 60, 514.Google Scholar
Smith, D., van Rijn, S., Henschel, J., Bilde, T., & Lubin, Y. (2009) Amplified fragment length polymorphism fingerprints support limited gene flow among social spider populations. Biological Journal of the Linnean Society, 97, 235246.CrossRefGoogle Scholar
Smith, D. R. (1982) Reproductive success of solitary and communal Philoponella-oweni (Araneae, Uloboridae). Behavioral Ecology and Sociobiology, 11, 149154.CrossRefGoogle Scholar
Smith, D. R. (1997) Notes on the reproductive biology and social behavior of two sympatric species of Philoponella (Araneae, Uloboridae). Journal of Arachnology, 25, 1119.Google Scholar
Smith, D. R. & Engel, M. S. (1994) Population-structure in an Indian cooperative spider, Stegodyphus-sarasinorum karsch (Eresidae). Journal of Arachnology, 22, 108113.Google Scholar
Smith, D. R. & Hagen, R. H. (1996) Population structure and interdemic selection in the cooperative spider Anelosimus eximius. Journal of Evolutionary Biology, 9, 589608.CrossRefGoogle Scholar
Smith, D. R. R. (1983) Ecological costs and benefits of communal behavior in a presocial spider. Behavioral Ecology and Sociobiology, 13, 107114.CrossRefGoogle Scholar
Smith, D. R. R. (1985) Habitat use by colonies of Philoponella-republicana (Araneae, Uloboridae). Journal of Arachnology, 13, 363373.Google Scholar
Stern, D. L. & Foster, W. A. (1996) The evolution of soldiers in aphids. Biological Reviews of the Cambridge Philosophical Society, 71, 2779.CrossRefGoogle ScholarPubMed
Trabalon, M. & Assi-Bessekon, D. (2008) Effects of web chemical signatures on intraspecific recognition in a subsocial spider, Coelotes terrestris (Araneae). Animal Behaviour, 76, 15711578.CrossRefGoogle Scholar
Uetz, G. W. (1989) The ricochet effect and prey capture in colonial spiders. Oecologia, 81, 154159.CrossRefGoogle ScholarPubMed
Uetz, G. W. & Hieber, C. S. (1997) Colonial web-building spiders: Balancing the costs and benefits of group living. In: Choe, J. C. & Crespi, B. J. (eds.) The Evolution of Social Behavior in Insects and Arachnids. Cambridge: Cambridge University Press, pp. 458475.CrossRefGoogle Scholar
Uetz, G. W., Kane, T. C., & Stratton, G. E. (1982) Variation in the social grouping tendency of a communal web-building spider. Science, 217, 547549.CrossRefGoogle ScholarPubMed
Uetz, G. W., Boyle, J., Hieber, C. S., & Wilcox, R. S. (2002) Antipredator benefits of group living in colonial web-building spiders: The “early warning effect”. Animal Behaviour, 63, 445452.CrossRefGoogle Scholar
Viera, C., Ghione, S., & Costa, F. G. (2006) Regurgitation among penultimate juveniles in the subsocial spider Anelosimus cf. studiosus (Theridiidae): Are males favored? Journal of Arachnology, 34, 258260.CrossRefGoogle Scholar
Viera, C., Costa, F. G., Ghione, S., & Benamu-Pino, M. A. (2007) Progeny, development and phenology of the sub-social spider Anelosimus cf. studiosus (Araneae, Theridiidae) from Uruguay. Studies on Neotropical Fauna and Environment, 42, 145153.CrossRefGoogle Scholar
Vollrath, F. (1982) Colony formation in a social spider. Zietschrift für Tierpsychologie, 60, 313324.CrossRefGoogle Scholar
Ward, P. I. (1986) Prey availability increases less quickly than nest size in the social spider stegodyphus-mimosarum. Behaviour, 97, 34.CrossRefGoogle Scholar
Waser, P. M., Austad, S. N., & Keane, B. (1986) When should animals tolerate inbreeding. The American Naturalist, 128, 529537.CrossRefGoogle Scholar
Whitehouse, M. E. A. & Lubin, Y. (2005) The functions of societies and the evolution of group living: Spider societies as a test case. Biological Reviews, 80, 347361.CrossRefGoogle Scholar
Wickler, W. & Seibt, U. (1993) Pedogenetic sociogenesis via the sibling-route and some consequences for Stegodyphus spiders. Ethology, 95, 118.CrossRefGoogle Scholar
Wilson, E. O. (1971) The Insect Societies. Cambridge, MA: Belknap Press.Google Scholar
Yip, E. C. & Rayor, L. S. (2011) Do social spiders cooperate in predator defense and foraging without a web? Behavioral Ecology and Sociobiology, 65, 19351947.CrossRefGoogle Scholar
Yip, E. C. & Rayor, L. S. (2014) Maternal care and subsocial behaviour in spiders. Biological Reviews, 89, 427449.CrossRefGoogle ScholarPubMed
Yip, E. C., Powers, K. S., & Avilés, L. (2008) Cooperative capture of large prey solves scaling challenge faced by spider societies. Proceedings of the National Academy of Sciences USA, 105, 1181811822.CrossRefGoogle ScholarPubMed
Yip, E. C., Rowell, D. M., & Rayor, L. S. (2012) Behavioural and molecular evidence for selective immigration and group regulation in the social huntsman spider, Delena cancerides. Biological Journal of the Linnean Society, 106, 749762.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×