Keilson and Servi introduced in [5] a variation of a GI/G/1 queue with vacation, in which at the end of a service time, either the server is not idle, and he starts serving the first customer in the queue with probability p, or goes on vacation with probability 1 – p, or he is idle, and he takes a vacation. At the end of a vacation, either customers are present, and the server starts serving the first customer, or he is idle, and he takes a vacation. The case p = 1, called the GI/G/1/V queue, was studied analytically by Gelenbe and Iasnogorodski [3] (see also [4]) and then by Doshi [1] and Fricker [2] who obtained stochastic decomposition results on the waiting-time of the nth customer extending the law decomposition result of [3]. Keilson and Servi [5] give a more complete analytic method of treating both the GI/G/1/V model and the Bernoulli vacation model: instead of the waiting time, they use a bivariate process at the service and vacation initiation epochs and the waiting-time distribution is computed as a conditional distribution of the above. In this note the law decomposition result is obtained from a reduction to the GI/G/1/V model with a modified service-time distribution just using the waiting time, with simple path arguments so that by [1] and [2] stochastic decomposition results are valid, which extend the result of [5].