Skip to main content Accessibility help
×
Home

Validation of an FFQ to assess antioxidant intake in overweight postmenopausal women

  • Meng Yang (a1), Ying Wang (a1), Catherine G Davis (a1), Sang Gil Lee (a1), Maria Luz Fernandez (a1), Sung I Koo (a1), Eunyoung Cho (a2) and Ock K Chun (a1)...

Abstract

Objective

To validate an FFQ to assess antioxidant intake in overweight postmenopausal women.

Design

A seventy-four-item antioxidant 1-month FFQ was developed based on major antioxidant sources in the American diet. Forty overweight postmenopausal women participated in a 9-month observational study and completed four sets of FFQ and 7 d food record (7dFR) every 3 months. Twelve-hour fasting blood was collected for plasma antioxidant measurement at the first visit.

Setting

Connecticut, USA.

Subjects

Forty overweight postmenopausal women.

Results

Spearman correlation coefficients of 1-month antioxidant intake estimated from the first set of FFQ and 7dFR ranged from 0·34 to 0·87, except for γ-tocopherol. The proportion of participants categorized into the extremely opposite tertiles averaged 7 %. Significant correlations were observed for diet–plasma vitamin C, α-tocopherol and carotenoids (P < 0·05). No time effect was observed on the dietary antioxidant intakes estimated from four 7dFR and four FFQ. Dietary antioxidants estimated from averaged four 7dFR showed moderate to high correlation with those estimated from averaged four FFQ and from each FFQ collected every 3 months. Bland–Altman plots did not show any systematic bias. Averaged misclassifications were below 10 % between these two instruments.

Conclusions

These findings attested a reasonable validity and a good acceptance of this 1-month FFQ in assessing both short-term and long-term diverse antioxidant intakes in these overweight postmenopausal women. The use of this FFQ in associating antioxidant intake with disease risk needs further investigation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Validation of an FFQ to assess antioxidant intake in overweight postmenopausal women
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Validation of an FFQ to assess antioxidant intake in overweight postmenopausal women
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Validation of an FFQ to assess antioxidant intake in overweight postmenopausal women
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email ock.chun@uconn.edu

References

Hide All
1. Genkinger, JM, Platz, EA, Hoffman, SC et al. (2004) Fruit, vegetable, and antioxidant intake and all-cause, cancer, and cardiovascular disease mortality in a community-dwelling population in Washington County, Maryland. Am J Epidemiol 160, 12231233.
2. Heidemann, C, Schulze, MB, Franco, OH et al. (2008) Dietary patterns and risk of mortality from cardiovascular disease, cancer, and all causes in a prospective cohort of women. Circulation 118, 230237.
3. Arai, Y, Watanabe, S, Kimira, M et al. (2000) Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 130, 2243.
4. Knekt, P, Kumpulainen, J, Jarvinen, R et al. (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76, 560568.
5. Kris-Etherton, PM, Hecker, KD, Bonanome, A et al. (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113, Suppl. 9B, 71S88S.
6. Liu, RH (2003) Protective role of phytochemicals in whole foods: implications for chronic disease prevention. Appl Biotechnol Food Sci Policy 1, 3946.
7. Rimm, EB, Katan, MB, Ascherio, A et al. (1996) Relation between intake of flavonoids and risk of coronary heart disease in male health professionals. Ann Intern Med 125, 384389.
8. Sesso, H, Gaziano, J, Liu, S et al. (2003) Flavonoid intake and the risk of cardiovascular disease in women. Am J Clin Nutr 77, 14001408.
9. Sesso, H, Paffenbarger, RJ, Oguma, Y et al. (2003) Lack of association between tea and cardiovascular disease in college alumni. Int J Epidemiol 32, 527533.
10. Satia, JA, Waiters, JL & Galanko, JA (2009) Validation of an antioxidant nutrient questionnaire in whites and African Americans. J Am Diet Assoc 109, 502508.
11. Willett, WC (1994) Future directions in the development of food-frequency questionnaires. Am J Clin Nutr 59, 1 Suppl., 171S174S.
12. Yang, M, Wang, Y, Davis, CG et al. (2012) Validation of an FFQ to assess short-term antioxidant intake against 30 d food records and plasma biomarkers. Public Health Nutr (Epublication ahead of print version).
13. Weyer, C, Yudkin, J, Stehouwer, C et al. (2002) Humoral markers of inflammation and endothelial dysfunction in relation to adiposity and in vivo insulin action in Pima Indians. Atherosclerosis 161, 233242.
14. Billington, C, Epstein, LH, Goodwin, NJ et al. (2000) Overweight, obesity, and health risk. Arch Intern Med 160, 898904.
15. Yang, M, Chung, S-J, Chung, CE et al. (2011) Estimation of total antioxidant capacity from diet and supplements in US adults. Br J Nutr 105, 254263.
16. National Center for Health Statistics (2002) National Health and Nutrition Examination Survey, 1999–2000 Data Files. Hyattsville, MD: Centers for Disease Control and Prevention; available at http://www.cdc.gov/nchs/nhanes/nhanes1999-2000/nhanes99_00.htm
17. National Center for Health Statistics (2004) National Health and Nutrition Examination Survey, 2001–2002 Data Files. Hyattsville, MD: Centers for Disease Control and Prevention; available at http://www.cdc.gov/nchs/data/nhanes/nhanes_01_02/l36_b_doc.pdf
18. Agricultural Research Service, US Department of Agriculture (2013) Database for the Flavonoid Content of Selected Foods. Beltsville, MD: USDA; available at http://www.ars.usda.gov/Services/docs.htm?docid=6231
19. Agricultural Research Service, US Department of Agriculture (2002) USDA–Iowa State University Database on the Isoflavone Content of Foods, Release 2·0. Beltsville, MD: USDA; available at http://www.ars.usda.gov/Services/docs.htm?docid=6382
20. Agricultural Research Service, US Department of Agriculture (2004) Database for the Proanthocyanidin Content of Selected Foods. Beltsville, MD: USDA; available at http://www.ars.usda.gov/Services/docs.htm?docid=5843
21. Kim, D-O, Chun, OK, Kim, YJ et al. (2003) Quantification of polyphenolics and their antioxidant capacity in fresh plums. J Agric Food Chem 51, 65096515.
22. Chun, OK, Floegel, A, Chung, SJ et al. (2010) Estimation of antioxidant intakes from diet and supplements in US adults. J Nutr 140, 317324.
23. Nutrition Coordinating Center, University of Minnesota (2010) Nutrition Data System for Research, Release 2010. Minneapolis, MN: NCC; available at http://www.ncc.umn.edu/products/ndsr.html
24. National Center for Health Statistics (2010) National Health and Nutrition Examination Survey, 2007–2008 Dietary Supplement Use. Hyattsville, MD: Centers for Disease Control and Prevention; available at http://www.cdc.gov/nchs/nhanes/nhanes2007-2008/DSDOC_E.htm
25. Ross, MA (1994) Determination of ascorbic acid and uric acid in plasma by high-performance liquid chromatography. J Chromatogr B 657, 197200.
26. Leonard, SW, Bruno, RS, Paterson, E et al. (2003) 5-Nitro-γ-tocopherol increases in human plasma exposed to cigarette smoke in vitro and in vivo . Free Radic Biol Med 35, 15601567.
27. Karppia, J, Nurmia, T, Olmedilla-Alonsob, B et al. (2008) Simultaneous measurement of retinol, α-tocopherol and six carotenoids in human plasma by using an isocratic reversed-phase HPLC method. J Chromatogr B 867, 226232.
28. van den Berg, R, Haenen, GRMM, van den Berg, H et al. (1999) Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem 66, 511517.
29. Floegel, A, Kim, DO, Chung, SJ et al. (2010) Development and validation of an algorithm to establish a total antioxidant capacity database of the US diet. Int J Food Sci Nutr 61, 600623.
30. Bland, JM & Altman, DG (1986) Statistical-methods for assessing agreement between 2 methods of clinical measurement. Lancet 1, 307310.
31. Cade, J, Thompson, R, Burley, V et al. (2002) Development, validation and utilisation of food-frequency questionnaires – a review. Public Health Nutr 5, 567587.
32. Hodge, AM, Simpson, JA, Fridman, M et al. (2009) Evaluation of an FFQ for assessment of antioxidant intake using plasma biomarkers in an ethnically diverse population. Public Health Nutr 12, 24382447.
33. Andersen, LF, Solvoll, K, Johansson, LR et al. (1999) Evaluation of a food frequency questionnaire with weighed records, fatty acids, and α-tocopherol in adipose tissue and serum. Am J Epidemiol 150, 7587.
34. Bautista, LE, Herran, OF & Pryer, JA (2005) Development and simulated validation of a food-frequency questionnaire for the Colombian population. Public Health Nutr 8, 181188.
35. MacIntyre, UE, Venter, CS & Vorster, HH (2001) A culture-sensitive quantitative food frequency questionnaire used in an African population: 1. Development and reproducibility. Public Health Nutr 4, 5362.
36. Sauvaget, C, Allen, N, Hayashi, M et al. (2002) Validation of a food frequency questionnaire in the Hiroshima/Nagasaki Life Span Study. J Epidemiol 12, 394401.
37. Date, C, Fukui, M, Yamamoto, A et al. (2005) Reproducibility and validity of a self-administered food frequency questionnaire used in the JACC study. J Epidemiol 15, Suppl. 1, S9S23.
38. Henriquez-Sanchez, P, Sanchez-Villegas, A, Doreste-Alonso, J et al. (2009) Dietary assessment methods for micronutrient intake: a systematic review on vitamins. Br J Nutr 102, Suppl. 1, S10S37.
39. Lee, MS, Pan, WH, Liu, KL et al. (2006) Reproducibility and validity of a Chinese food frequency questionnaire used in Taiwan. Asia Pac J Clin Nutr 15, 161169.
40. Schroder, H, Covas, MI, Marrugat, J et al. (2001) Use of a three-day estimated food record, a 72-hour recall and a food-frequency questionnaire for dietary assessment in a Mediterranean Spanish population. Clin Nutr 20, 429437.
41. McNaughton, SA, Marks, GC, Gaffney, P et al. (2005) Validation of a food-frequency questionnaire assessment of carotenoid and vitamin E intake using weighed food records and plasma biomarkers: the method of triads model. Eur J Clin Nutr 59, 211218.
42. Satia, JA, Watters, JL & Galanko, JA (2009) Validation of an antioxidant nutrient questionnaire in whites and African Americans. J Am Diet Assoc 109, 502508.
43. Willett, W (2002) Nutritional Epidemiology. New York: Oxford University Press.
44. Labonte, ME, Cyr, A, Baril-Gravel, L et al. (2012) Validity and reproducibility of a web-based, self-administered food frequency questionnaire. Eur J Clin Nutr 66, 166173.
45. Dixon, LB, Subar, AF, Wideroff, L et al. (2006) Carotenoid and tocopherol estimates from the NCI diet history questionnaire are valid compared with multiple recalls and serum biomarkers. J Nutr 136, 30543061.
46. Pellegrini, N, Salvatore, S, Valtuena, S et al. (2007) Development and validation of a food frequency questionnaire for the assessment of dietary total antioxidant capacity. J Nutr 137, 9398.
47. Ocke, MC, Bueno-de-Mesquita, HB, Goddijn, HE et al. (1997) The Dutch EPIC food frequency questionnaire. I. Description of the questionnaire, and relative validity and reproducibility for food groups. Int J Epidemiol 26, Suppl. 1, S37S48.
48. Davis, CG (2010) Estimation of the number of days required to determine usual antioxidant intakes and assessment of the prevalence of nutrient inadequacy among college students. Master Thesis, University of Connecticut.
49. Locke, E, Coronado, GD, Thompson, B et al. (2009) Seasonal variation in fruit and vegetable consumption in a rural agricultural community. J Am Diet Assoc 109, 4551.
50. Ziegler, RG, Wilcox, HB, Mason, TJ et al. (1987) Seasonal-variation in intake of carotenoids and vegetables and fruits among white men in New Jersey. Am J Clin Nutr 45, 107114.
51. O'Connell, ED, Nolan, JM, Stack, J et al. (2008) Diet and risk factors for age-related maculopathy. Am J Clin Nutr 87, 712722.
52. Block, G, Woods, M, Potosky, A et al. (1990) Validation of a self-administered diet history questionnaire using multiple diet records. J Clin Epidemiol 43, 13271335.
53. Masson, LF, McNeill, G, Tomany, JO et al. (2003) Statistical approaches for assessing the relative validity of a food-frequency questionnaire: use of correlation coefficients and the kappa statistic. Public Health Nutr 6, 313321.

Keywords

Validation of an FFQ to assess antioxidant intake in overweight postmenopausal women

  • Meng Yang (a1), Ying Wang (a1), Catherine G Davis (a1), Sang Gil Lee (a1), Maria Luz Fernandez (a1), Sung I Koo (a1), Eunyoung Cho (a2) and Ock K Chun (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed