Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Novel raspberry triterpenoids with potential anti-cancer effects
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Novel raspberry triterpenoids with potential anti-cancer effects
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Novel raspberry triterpenoids with potential anti-cancer effects
        Available formats
        ×
Export citation

The anticancer properties of bioactive phytochemicals within berries are of interest given the inverse correlation of fruit and vegetable consumption with the incidence of colorectal cancer (CRC) 1 . Berries are one of the most commonly consumed sources of polyphenols and these compounds may exert protective effects against initiation of CRC by reducing DNA damage 2 . The aim of this study was to assess the bioactivity of raspberry phytochemicals identified in vivo with respect to markers of gut health.

Using non-targeted LC-MSn of ileal fluids from eleven ileostomates who completed a raspberry feeding study 3 , we identified novel compounds and putatively identified major components as fruit triterpenoid glycosides. The major triterpenoid had an apparent MW of 680 and could be purified from raspberry seeds. The anti-genotoxic activity of this triterpenoid-enriched fraction (TRF) was assessed by COMET assay using HT29 (adenocarcinoma) and CCD841 CoN (normal epithelial) cells. For the in vitro studies both cell lines were incubated for 24 h with 100 nM of either the raspberry TRF or the positive control, a pure synthetic triterpenoid 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) and then challenged with 75μM hydrogen peroxide. Further, we determined if the treatments modulated gene expression of the Nrf2-ARE pathway involved in oxidative stress cytoprotection 4 , namely nuclear factor (erythroid-derived 2)-like 2 (Nrf2), NAD(P)H Dehydrogenase, Quinone-1 (NQO1) and Heme oxygenase-1 (HO-1)4. Experiments were carried out as independent triplicates. ANOVA was applied to test for significant differences between means compared to untreated control using Dunnett T test (post hoc).

Treatment of HT29 cells with 100 nM of with either TRF or CDDO significantly decreased DNA damage by ~40–45 % in response to oxidative challenge (p < 0·01). In the normal CCD841 CoN cells, DNA damage was also reduced by ~50–55% for both treatments (p < 0·01). Efficacy between cell lines was not significantly different. With respect to Nrf2-ARE pathway in HT29 & CCD841 CoN cells, CDDO treatment significantly increased expression (p < 0·05) of all the target genes (Nrf2, NQO-1 and HO-1). TRF treatment of HT29 cells significantly increased Nrf2 expression (p < 0·05), but it resulted in a decreased expression of NQO1 and HO-1 (p < 0·05). In CCD841 CoN cells, TRF treatment increased expression of Nrf2 and NQ1 but significantly reduced the expression of HO-1(p < 0·05).

To conclude, we identified a novel raspberry triterpenoid (TRF) from ileal fluid following raspberry consumption; therefore these components survive intestinal digestion and would likely enter the colon in vivo. We have subsequently demonstrated that the colon-available TRF can reduce DNA damage in normal colonocytes, mediated in part by the Nrf2 pathway, at a physiologically relevant concentration.

This work was supported by a grant from the National Processed Raspberry Council.

1. Johnson, C.M. et al. (2013) Cancer Causes Control 24, 12071222.
2. Brown, E.M., et al. (2014) J Agric Food Chem 62, 3852–66.
3. McDougall, G.J., et al. (2014) J Agric Food Chem 62, 7631–41.
4. Saw, C.L., Kong, AN (2011) Expert Opin Ther Targets. 15, 281–95.