Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Genetic predisposition to salt sensitivity and its effects on dietary salt taste perception and intake
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Genetic predisposition to salt sensitivity and its effects on dietary salt taste perception and intake
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Genetic predisposition to salt sensitivity and its effects on dietary salt taste perception and intake
        Available formats
        ×
Export citation

Hypertension is one of the leading causes of cardiovascular diseases worldwide. It is largely a modifiable risk factor with dietary salt being one of the main contributors. Blood pressure (BP) response to dietary salt intake is not homogenous across population. This phenomenon is called salt sensitivity. Single nucleotide polymorphism (SNP) rs7571842 of the sodium-bicarbonate co-transporter (SLC4A5) gene has been particularly associated to salt sensitivity in Caucasian population, with A being the risk allele( 1 ). In addition, genetic predisposition may affect dietary intake by altering taste perception( 2 ). The aim of this ongoing study is to investigate whether genetic predisposition to salt sensitivity is associated to altered salt taste thresholds and habitual dietary salt intake.

To date, 13 participants (4 males, 9 females) have completed the study protocol. Salt taste detection (STDT) and recognition thresholds (STRT) were identified at baseline, using British Standards Institution (BSI) sensory analysis method (BS ISO 3972:2011). Habitual dietary salt intake was assessed with validated food frequency questionnaire (FFQ). DNA was extracted from stabilised saliva samples and genotyped using TaqMan® genotyping assay ID: C_197439_10 (Applied Biosystems, USA). Salt sensitivity was defined as the difference in mean arterial pressure (MAP) and systolic blood pressure (SBP) between 7-day low-salt (51·3 mmol/day sodium) and 7-day high-salt (307·8 mmol/day) diet. Dietary compliance was assessed based on 24-hour urinary sodium, potassium and creatinine excretion.

Fig. 1. Example of an allelic discrimination plot for the SNP rs7571842 in the study population

BMI, Body mass index; DBP, Diastolic blood pressure

There was no difference in SBP (Fig. 2) or MAP (data not shown) response to dietary intervention between rs7571842 genotype groups. There was no correlation between salt sensitivity of BP, salt taste thresholds and habitual salt intake (data not shown) or a difference in salt taste thresholds and dietary salt intake between rs7571842 genotypes. In conclusion, genetic variation in the SLC4A5 gene is not associated to altered salt taste perception or intake.

Fig. 2. SBP response to each diet by genotype status (participants with incomplete urinary samples excluded from the analysis)

1. Carey, RM, Schoeffel, CD, Gildea, JJ et al. (2012) Hypertension 60, 1359–66.
2. Dotson, CD, Babich, J, Steinle, NI (2012) Curr Nutr Rep, 1, 175183.