Skip to main content Accessibility help
×
Home

Cancer-associated malnutrition, cachexia and sarcopenia: the skeleton in the hospital closet 40 years later

  • Aoife M. Ryan (a1), Derek G. Power (a2), Louise Daly (a1), Samantha J. Cushen (a1), Ēadaoin Ní Bhuachalla (a1) and Carla M. Prado (a3)...

Abstract

An awareness of the importance of nutritional status in hospital settings began more than 40 years ago. Much has been learned since and has altered care. For the past 40 years several large studies have shown that cancer patients are amongst the most malnourished of all patient groups. Recently, the use of gold-standard methods of body composition assessment, including computed tomography, has facilitated the understanding of the true prevalence of cancer cachexia (CC). CC remains a devastating syndrome affecting 50–80 % of cancer patients and it is responsible for the death of at least 20 %. The aetiology is multifactorial and complex; driven by pro-inflammatory cytokines and specific tumour-derived factors, which initiate an energy-intensive acute phase protein response and drive the loss of skeletal muscle even in the presence of adequate food intake and insulin. The most clinically relevant phenotypic feature of CC is muscle loss (sarcopenia), as this relates to asthenia, fatigue, impaired physical function, reduced tolerance to treatments, impaired quality of life and reduced survival. Sarcopenia is present in 20–70 % depending on the tumour type. There is mounting evidence that sarcopenia increases the risk of toxicity to many chemotherapy drugs. However, identification of patients with muscle loss has become increasingly difficult as 40–60 % of cancer patients are overweight or obese, even in the setting of metastatic disease. Further challenges exist in trying to reverse CC and sarcopenia. Future clinical trials investigating dose reductions in sarcopenic patients and dose-escalating studies based on pre-treatment body composition assessment have the potential to alter cancer treatment paradigms.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Cancer-associated malnutrition, cachexia and sarcopenia: the skeleton in the hospital closet 40 years later
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Cancer-associated malnutrition, cachexia and sarcopenia: the skeleton in the hospital closet 40 years later
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Cancer-associated malnutrition, cachexia and sarcopenia: the skeleton in the hospital closet 40 years later
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr A. M. Ryan, email a.ryan@ucc.ie

References

Hide All
1. Butterworth, CE (1974) The skeleton in the hospital. Nutr Today 9, 48.
2. Dewys, WD, Begg, C, Lavin, PT et al. (1980) Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern cooperative oncology group. Am J Med 69, 491497.
3. Bozzetti, F, SCRINIO Working Group (2009) Screening the nutritional status in oncology: a preliminary report on 1000 outpatients. Support Care Cancer 17, 279284.
4. Tangvik, RJ, Tell, GS, Guttormsen, AB et al. (2015) Nutritional risk profile in a university hospital population. Clin Nutr 34, 705711.
5. Martin, L, Senesse, P, Gioulbasanis, I et al. (2015) Diagnostic criteria for the classification of cancer-associated weight loss. J Clin Oncol 33, 9099.
6. Nicolini, A, Ferrari, P, Masoni, MC et al. (2013) Malnutrition, anorexia and cachexia in cancer patients: a mini-review on pathogenesis and treatment. Biomed Pharmacother 67, 807817.
7. Blum, D, Omlin, A, Baracos, VE et al. (2011) Cancer cachexia: a systematic literature review of items and domains associated with involuntary weight loss in cancer. Crit Rev Oncol/Hematol 80, 114144.
8. Bye, A, Jordhøy, MS, Skjegstad, G et al. (2013) Symptoms in advanced pancreatic cancer are of importance for energy intake. Support Cancer Care 21, 219227.
9. Hutton, JL, Baracos, VE & Wismer, WV (2007) Chemosensory dysfunction is a primary factor in the evolution of declining nutritional status and quality of life in patients with advanced cancer. J Pain Symptom Manag 33, 156165.
10. Kubrak, C, Olson, K, Jha, N et al. (2013) Clinical determinants of weight loss in patients receiving radiation and chemo- irradiation for head and neck cancer: a prospective longitudinal view. Head Neck 35, 695703.
11. Ryan, AM, Healy, LA, Power, DG et al. (2007) Short-term nutritional implications of total gastrectomy for malignancy, and the impact of parenteral nutritional support. Clin Nutr 26, 718727.
12. Haverkort, EB, Binnekade, JM, Busch, OR et al. (2010) Presence and persistence of nutrition-related symptoms during the first year following esophagectomy with gastric tube reconstruction in clinically disease-free patients. World J Surg 34, 28442852.
13. Ryan, AM, Rowley, SP, Healy, LA et al. (2006) Post-oesophagectomy early enteral nutrition via a needle catheter jejunostomy: 8-year experience at a specialist unit. Clin Nutr 25, 386393.
14. Argilés, JM, Busquets, S, Stemmler, B & López-Soriano, FJ (2014) Cancer cachexia: understanding the molecular basis. Nat Rev Cancer 14, 754762.
15. Sanders, PM & Tisdale, MJ (2004) Role of lipid-mobilising factor (LMF) in protecting tumour cells from oxidative damage. Br J Cancer 90, 12741278.
16. Argilés, JM, López-Soriano, J, Almendro, V et al. (2005) Cross-talk between skeletal muscle and adipose tissue: a link with obesity? Med Res Rev 25, 4965.
17. Stephens, NA, Skipworth, RJ, Macdonald, AJ et al. (2011) Intramyocellular lipid droplets increase with progression of cachexia in cancer patients. J Cachexia Sarcopenia Muscle 2, 111117.
18. Langius, JA, Kruizenga, HM, Uitdehaag, BM et al. (2012) Resting energy expenditure in head and neck cancer patients before and during radiotherapy. Clin Nutr 31, 549554.
19. Cao, DX, Wu, GH, Zhang, B et al. (2010) Resting energy expenditure and body composition in patients with newly detected cancer. Clin Nutr 29, 7277.
20. Okamoto, H, Sasaki, M, Johtatsu, T et al. (2011) Resting energy expenditure and nutritional status in patients undergoing transthoracic esophagectomy for esophageal cancer. J Clin Biochem Nutr 49, 169173.
21. Arends, J, Bodoky, G, Bozzetti, F et al. (2006) ESPEN guidelines on enteral nutrition: non-surgical oncology. Clin Nutr 25, 245259.
22. Wu, J, Huang, C, Xiao, H et al. (2013) Weight loss and resting energy expenditure in male patients with newly diagnosed esophageal cancer. Nutrition 29, 13101314.
23. Black, AE, Coward, WA, Cole, TJ & Prentice, AM (1996) Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements. Eur J Clin Nutr 50, 7292.
24. Moses, AW, Slater, C, Preston, T et al. (2004) Reduced total energy expenditure and physical activity in cachectic patients with pancreatic cancer can be modulated by an energy and protein dense oral supplement enriched with n-3 fatty acids. Br J Cancer 90, 9961002.
25. Mollinger, LA, Spurr, GB, el Ghatit, AZ et al. (1985) Daily energy expenditure and basal metabolic rates of patients with spinal cord injury. Arch Phys Med Rehab 66, 420426.
26. Stallings, VA, Zemel, BS, Davies, JC, Cronk, CE & Charney, EB (1996) Energy expenditure of children and adolescents with severe disabilities: a cerebral palsy model. Am J Clin Nutr 64, 627634.
27. Biolo, G, Ciocchi, B, Stulle, M et al. (2005) Metabolic consequences of physical inactivity. J Ren Nutr 15, 4953.
28. Kortebein, P, Symons, TB, Ferrando, A et al. (2008) Functional impact of 10 d of bed rest in healthy older adults. J Gerontol A Biol Sci Med Sci 63, 10761081.
29. Fearon, FC (2008) Cancer cachexia: developing a multimodal therapy for a multidimensional problem. Eur J Cancer 44, 11241132.
30. MacDonald, N, Easson, AM, Mazurak, VC, Dunn, GP & Baracos, VE (2003) Understanding and managing cancer cachexia. J Am Coll Surg 197, 143161.
31. Evans, WJ, Morley, JE, Argilés, J et al. (2008) Cachexia: a new definition. Clin Nutr 27, 793799.
32. Fearon, KC, Strasser, F, Anker, SD et al. (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12, 489495.
33. Deans, DA, Tan, BH, Wigmore, SJ et al. (2009) The influence of systemic inflammation, dietary intake and stage of disease on rate of weight loss in patients with gastro-oesophageal cancer. Br J Cancer 100, 6369.
34. Hess, LM, Barakat, R, Tian, C et al. (2007) Weight change during chemotherapy as a potential prognostic factor for stage III epithelial ovarian carcinoma: a gynecologic oncology group study. Gynecol Oncol 107, 260265.
35. Buccheri, G & Ferrigno, D (2001) Importance of weight loss definition in the prognostic evaluation of non-small-cell lung cancer. Lung Cancer 34, 433440.
36. Bachmann, J, Heiligensetzer, M, Krakowski-Roosen, H et al. (2008) Cachexia worsens prognosis in patients with resectable cancer. J Castrointest Surg 12, 11931201.
37. Peng, P, Hyder, O, Firoozmand, A et al. (2012) Impact of sarcopenia on outcomes following resection of pancreatic adenocarcinoma. J Gastrointest Surg 16, 14781486.
38. Prado, CM, Lieffers, JR, McCargar, LJ et al. (2008) Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population based study. Lancet Oncol 9, 629635.
39. World Cancer Research fund/American Institute for Cancer Research. (2007) Food Nutrition Physical Activity and the Prevention of Cancer: A Global Perspective. Washington, DC: AICR.
40. Ramos Chaves, M, Boléo-Tomé, C, Monteiro-Grillo, I et al. (2010) The diversity of nutritional status in cancer: new insights. Oncologist 15, 523530.
41. Gioulbasanis, I, Martin, L, Baracos, VE et al. (2015) Nutritional assessment in overweight and obese patients with metastatic cancer: does it make sense? Ann Oncol 26, 217221.
42. Martin, L, Birdsell, L, MacDonald, N et al. (2013) Cancer cachexia in the Age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol 31, 15391547.
43. Evans, WJ & Campbell, WW (1993) Sarcopenia and age-related changes in body composition and functional capacity. J Nutr 123, 465468.
44. Baumgartner, R, Koehler, KM & Gllagher, D (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 123, 465468.
45. Mourtzakis, M, Prado, CM & Lieffer, JR (2008) A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol, Nutr Metab 33, 9971006.
46. Shen, W, Punyanitya, M, Wang, Z et al. (2004) Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol 97, 23332338.
47. Heymsfield, SB, Smith, R, Aulet, M et al. (1990) Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am J Clin Nutr 52, 214218.
48. Miller, KD, Jones, E & Yanocski, JA (1998) Visceral abdominal-fat accumulation associated with use of indinavir. Lancet 351, 871875.
49. Miyamoto, Y, Baba, Y, Sakamoto, Y et al. (2015) Sarocopenia is a negative prognostic factor after curative resection of colorectal cancer. Ann Sug Oncol 22, 26632668.
50. Van Vledder, MG, Levolger, S, Ayez, N et al. (2012) Body composition and outcome in patients undergoing resection of colorectal liver mets. Br J Surg 99, 550557.
51. Du Bois, D & Du Bois, EF (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17, 863871.
52. Gurney, H (1996) Dose calculation of anticancer dugs: a review of current practice and introduction of an alternative. J Clin Oncol 82, 323325.
53. Takimoto, CH (2009) Maximum tolerated dose: clinical endpoint for a bygone era? Target Oncol 4, 143147.
54. Trobec, K, Kerec Kos, M, Von Haeling, S et al. (2013) Pharmacokinetics of drugs in cachectic patients: a systematic review. PLoS ONE 8, e79603.
55. Roubenoff, R & Kehayias, JJ (1991) The meaning and measurement of lean body mass. Nutr Rev 49, 163175.
56. Morgan, DJ & Bray, KM (1994) Lean body mass as a predictor of drug dose. Implications for drug therapy. Clin Pharm 26, 292307.
57. Stobaus, N, Kupferling, S, Lorenz, ML et al. (2013) Discrepancy between body surface area and body composition in cancer. Nutr Cancer 65, 11511156.
58. Prado, CM, Lima, I, Baracos, V et al. (2011) An exploratory study of body composition as a determinant of epirubicin pharmacokinetics and toxicity. Cancer Chemother Pharmacol 67, 93101.
59. Cushen, SJ, Power, DG, Teo, M et al. (2014) Body composition by computed tomography as a predictor of toxicity in patients with renal cell carcinoma treated with sunitinub. Am J Clin Oncol. [Epublication ahead of print].
60. Antoun, S, Baracos, VE, Birdsell, L et al. (2010) Low body mass index and sarcopenia associated with dose-limiting toxicity of sorafenib in patients with renal cell carcinoma. Ann Oncol 21, 15941598.
61. Mir, O, Coriat, R, Blanchet, B et al. (2012) Sarcopenia predicts early dose-limiting toxicities and pharmacokinetics of sorfenib in patients with hepatocellular carcinoma. PloS ONE 7, e37563.
62. Prado, CM, Baracos, VE, McCargar, LJ et al. (2007) Body composition as an independent determinant of 5-flurouracil-based chemotherapy toxicity. Clin Cancer Res 13, 32643268.
63. Prado, CM, Baracos, VE, McCarger, LJ et al. (2009) Sarcopenia as a determinant of chemotherapy toxicity and time to tumour progression in metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res 15, 29202926.
64. Prado, CM (2013) Body composition in chemotherapy: the promising role of CT scans. Curr Opin Clin Nutr Metab Care 16, 525533.
65. Antoun, S, Borget, I & Lanoy, E (2013) Impact of sarcopenia on the prognosis and treatment toxicities in patients diagnosed with cancer. Curr Opin Support Palliat Care 7, 383389.
66. Alexandre, J, Rey, E, Girre, V et al. (2007) Relationship between cytochrome 3A activity, inflammatory status and the risk of docetaxel-induced febrile neutropenia: a prospective study. Ann Oncol 18, 168172.
67. Goodpaster, BH, Kelley, DE, Thaete, FL et al. (1985) Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol 89, 104110.
68. Sabel, MS, Lee, J, Cai, S et al. (2011) Sarcopenia as a prognostic factor among patients with stage III melanoma. Ann Surg Oncol 18, 35793585.
69. Sharma, P, Zargar-Shoshtari, K, Caracciolo, JT et al. (2015) Sarcopenia as a predictor of overall survival after cytoreductive nephrectomy for metastatic renal cell carcinoma. Urol Oncol 33, 339e17–23.
70. Ravasco, P, Monteiro, I, Vidal, P et al. (2004) Cancer: disease and nutrition are key determinants of patients’ quality of life. Support Care Cancer 12, 246252.
71. Ravasco, P, Monteiro-Grillo, I & Camilo, ME (2003) Does nutrition influence quality of life in cancer patients undergoing radiotherapy? Radiother Oncol 67, 213220.
72. Arndt, V, Merx, H, Stegmaier, C et al. (2004) Quality of life in patients with colorectal cancer 1 year after diagnosis compared with the general population: a population-based study. J Clin Oncol 22, 48294836.
73. Ferlay, J, Steliarova-Foucher, E, Lortet-Tieulent, J et al. (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49, 13741403.
74. Siegel, R, Ma, J, Zou, Z et al. (2014) Cancer statistics, 2014. Cancer J Clin, 64, 929.
75. Metz, J, Claghorn, K, Sweeney-Cordis, E et al. (2005) Nutritional attitudes of recently diagnosed cancer patients. ASCO Annu Meeting Proc 23, 8011.
76. Caro, MMM, Laviano, A & Pichard, C (2007) Nutritional intervention and quality of life in adult oncology patients. Clin Nutr 26, 289301.
77. Aapro, M, Arends, J, Bozzetti, F et al. (2014) Early recognition of malnutrition and cachexia in the cancer patient: a position paper of a european school of oncology task force. Ann Oncol 25, 14921499.
78. Fearon, KC, Voss, AC & Hudstead, DS (2006) Definition of cancer cachexia: effect of weight loss, reduced food intake, and systemic inflammation on functional status and prognosis. Am J Clin Nutr 83, 13451350.
79. Wheelwright, S, Darlington, AS, Hopkinson, JB et al. (2013) A systematic review of health-related quality of life instruments in patients with cancer cachexia. Support Care Cancer 21, 26252636.
80. Nourissat, A, Vasson, M, Merrouche, Y et al. (2008) Relationship between nutritional status and quality of life in patients with cancer. Eur J Cancer 44, 12381242.
81. Evans, WJ & Lambert, CP (2007) Physiological basis of fatigue. Am J Phys Med Rehabil 86, S29S46.
82. Ryan, JL, Carroll, JK, Ryan, EP et al. (2007) Mechanisms of cancer-related fatigue. Oncologist 12, 2234.
83. Lis, CG, Gupta, D, Lammersfeld, CA et al. (2012) Role of nutritional status in predicting quality of life outcomes in cancer-a systematic review of the epidemiological literature. Nutr J 11, 27.
84. Pirri, C, Bayliss, E, Trotter, J et al. (2013) Nausea still the poor relation in antiemetic therapy? The impact on cancer patients’ quality of life and psychological adjustment of nausea, vomiting and appetite loss, individually and concurrently as part of a symptom cluster. Support Care Cancer 21, 735748.
85. Isenring, E, Bauer, J & Capra, S (2003) The scored Patient-generated Subjective Global Assessment (PG-SGA) and its association with quality of life in ambulatory patients receiving radiotherapy. Eur J Clin Nutr 57, 305309.
86. Ross, O, Ashley, S, Norton, A et al. (2004) Do patients with weight loss have a worse outcome when undergoing chemotherapy for lung cancers? Br J Cancer 90, 19051911.
87. Del Fabbro, E, Reddy, SG, Walker, P & Bruera, E (2007) Palliative sedation: when the family and consulting service see no alternative. J Palliat Med 10, 488492.
88. Baldwin, C, Spiro, A, Ahern, R & Emery, PW (2012) Oral nutritional interventions in malnourished patients with cancer: a systematic review and meta-analysis. J Natl Cancer Inst 104, 371385.
89. de Aguiar Pastore Silva, J, Emilia de Souza Fabre, M & Waitzberg, DL (2015) Omega-3 supplements for patients in chemotherapy and/or radiotherapy: a systematic review. Clin Nutr 34, 359366.
90. Ryan, AM, Reynolds, JV, Healy, LA et al. (2009) Enteral nutrition enriched with Eicosapentaenoic acid preserves lean body mass following esophageal cancer surgery: results of a double-blinded RCT. Ann Surg 249, 355363.
91. Maddocks, M, Murton, AJ & Wilcock, A (2012) Therapeutic exercise in cancer cachexia. Crit Rev Oncol 17, 285292.
92. Solheim, TS & Laird, B (2012) Evidence base for multimodal therapy in cachexia. Curr Opin Support Palliat Care 6, 424431.
93. Balstad, TR, Kaasa, S & Solheim, TS (2014) Multimodal nutrition/anabolic therapy for wasting conditions. Curr Opin Clin Nutr Metab Care 17, 226235.
94. Ries, A, Trottenberg, P, Elsner, F et al. (2012) A systematic review on the role of fish oil for the treatment of cachexia in advanced cancer: an EPCRC cachexia guidelines project. Palliat Med 26, 294304.
95. Solheim, TS, Fearon, KC, Blum, D & Kaasa, S (2013) Non-steroidal anti-inflammatory treatment in cancer cachexia: a systematic literature review. Acta Oncol 52, 617.
96. Bozzetti, F (2013) Nutritional support of the oncology patient. Crit Rev Oncol Hematol 87, 172200.
97. Nittenberg, G & Raynard, B (2000) Nutritional support of the cancer patient: issues and dilemmas. Crit Reviews in oncology Haematology 34, 137168.
98. Barrera, R (2002) Nutritional support in cancer patients. JPEN – J Parent Enteral Nutr 26(Suppl. 5), 563571.
99. Baracos, VE (2006) Meeting the aminoacid requirements for protein anabolism in cancer cachexia. In Cachexia and Wasting. A Modern Approach, pp. 631634 [Mantavani, G, editor]. Milan: Springer.
100. Prado, CM, Cushen, S, Orsso, C & Ryan, A (2016) Sarcopenia and cachexia in the era of obesity: clinical and nutritional impact. Proc Nutr Soc. (under review).
101. Prado, CM & Heymsfield, SB (2014) Lean tissue imaging: a new era for nutritional assessment and intervention. JPEN – J Parenter Enteral Nutr 38, 940953.
102. Tan, BJ, Birdsell, LA, Martin, L et al. (2009) Sarcopenia in an overweight or obese patient is an adverse prognostic factor in pancreatic cancer. Clin Cancer Res 15, 69736979.
103. Villasenor, A, Ballard-Barbash, R, Baumgartner, K et al. (2012) Prevalence and prognostic effect of sarcopenia in breast cancer survivors: the HEAL study. J Cancer Surviv 6, 398406.
104. Voron, T, Tselikas, L, Pietrasz, D et al. (2014) Sarcopenia impacts on short and long-term results of hepatectomy for hepatocellular carcinoma. Ann Surg 261, 11731183.
105. Psutka, SP, Carrasco, A, Schmit, GD et al. (2014) Sarcopenia in patients with bladder cancer undergoing radical cystectomy: impact on cancer-specific and all-cause mortality. Cancer 120, 29102918.
106. Huillard, O, Mir, O, Peyromaure, M et al. (2013) Sarcopenia and body mass index predicts sunitunib-induced early dose limiting toxicities in renal cancer patients. Br J Cancer 108, 10341041.
107. Massicotte, MH, Borget, I, Broutin, S et al. (2013) Body composition variation and impact of low skeletal muscle mass in patients with advanced medullary thyroid carcinoma treated with vandetanib: results from a placebo-controlled study. J Clin Endocrinol Metab 98, 24012408.
108. Barret, M, Antoun, S, Dalban, C et al. (2014) Sarcopenia is linked to treatment toxicity in patients with metastatic colorectal cancer. Eur J Surg Oncol 66, 583589.
109. Tan, BH, Brammer, K, Randhawa, N et al. (2015) Sarcopenia is associated with toxicity in patients undergoing neoadjuvant chemotherapy for oesophago-gastric cancer. Eur J Surg Oncol 41, 333338.
110. Baracos, VE, Reiman, T, Mourtzakis, M et al. (2010) Body composition in patients with non–small cell lung cancer: a contemporary view of cancer cachexia with the use of computed tomography image analysis. Am J Clin Nutr 91, 11331137.
111. Moryoussef, F, Dhooge, M, Volet, J et al. (2015) Reversible sarcopenia in patients with gastrointestinal stromal tumor treated with imatinib. J Cachexia Sarcopenia Muscle. DOI: 10.1002/jcsm.12047.
112. Lieffers, JR, Bathe, OF, Fassbender, K et al. (2012) Sarcopenia is associated with postoperative infection and delayed recovery from colorectal cancer resection surgery. Br J Cancer 107, 931936.
113. Reisinger, K, Van Vugt, J, Tegels, J et al. (2015) Functional compromise reflected by sarcopenia, frailty, and nutritional depletion predicts adverse postoperative outcomes after colorectal cancer surgery. Ann Surg 261, 345352.
114. Van Vugt, JL, Braam, HJ, Van Oudheusden, TR et al. (2015) Skeletal muscle depletion is associated with severe postoperative complications in patients undergoing cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for peritoneal carcinomatosis of colorectal cancer. Ann Surg Oncol 22, 36253631.
115. Parsons, HA, Tsimberidou, AM, Pontikos, M et al. (2012) Evaluation of the clinical relevance of body composition parameters in patients with cancer metastatic to the liver treated with hepatic arterial infusion chemotherapy. Nutr Cancer 64, 206217.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed