Skip to main content Accessibility help
×
Home

A review of select minerals influencing the haematopoietic process

  • Dalila Cunha Oliveira (a1), Amanda Nogueira-Pedro (a1), Ed Wilson Santos (a1), Araceli Hastreiter (a1), Graziela Batista Silva (a1), Primavera Borelli (a1) and Ricardo Ambrósio Fock (a1)...

Abstract

Micronutrients are indispensable for adequate metabolism, such as biochemical function and cell production. The production of blood cells is named haematopoiesis and this process is highly consuming due to the rapid turnover of the haematopoietic system and consequent demand for nutrients. It is well established that micronutrients are relevant to blood cell production, although some of the mechanisms of how micronutrients modulate haematopoiesis remain unknown. The aim of the present review is to summarise the effect of Fe, Mn, Ca, Mg, Na, K, Co, iodine, P, Se, Cu, Li and Zn on haematopoiesis. This review deals specifically with the physiological requirements of selected micronutrients to haematopoiesis, showing various studies related to the physiological requirements, deficiency or excess of these minerals on haematopoiesis. The literature selected includes studies in animal models and human subjects. In circumstances where these minerals have not been studied for a given condition, no information was used. All the selected minerals have an important role in haematopoiesis by influencing the quality and quantity of blood cell production. In addition, it is highly recommended that the established nutrition recommendations for these minerals be followed, because cases of excess or deficient mineral intake can affect the haematopoiesis process.

Copyright

Corresponding author

*Corresponding author: Ricardo Ambrósio Fock, email hemato@usp.br

References

Hide All
1. Nogueira-Pedro, A, Dos Santos, GG, Oliveira, DC, et al. (2016) Erythropoiesis in vertebrates: from ontogeny to clinical relevance. Front Biosci 8, 100112.
2. Mendelson, A & Frenette, PS (2014) Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nature Med 20, 833846.
3. Borelli, P, Barros, FEV, Nakajima, K, et al. (2009) Protein–energy malnutrition halts hemopoietic progenitor cells in the G0/G1 cell cycle stage, thereby altering cell production rates. Braz J Med Biol Res 42, 523530.
4. Cunha, MCR, Lima, FS, Vimolo, MAR, et al. (2013) Protein malnutrition induces bone marrow mesenchymal stem cells commitment to adipogenic differentiation leading to hematopoietic failure. PLOS ONE 8, e58872.
5. Xavier, JG, Favero, ME, Vinolo, MAR, et al. (2007) Protein–energy malnutrition alters histological and ultrastructural characteristics of the bone marrow and decreases haematopoiesis in adult mice. Histol Histopathol 22, 651660.
6. Dennehy, C & Tsourounis, C (2010) A review of select vitamins and minerals used by postmenopausal women. Maturitas 66, 370380.
7. Brückmann, G & Zondek, SG (1939) Iron, copper and manganese in human organs at various ages. Biochem J 33, 18451857.
8. Schultze, MO & Elvehjem, CA (1934) An improved method for the determination of hemoglobin in chicken blood. J Biol Chem 105, 253257.
9. Kitzes, G, Elvehjem, CA & Schuette, HA (1944) Determination of blood plasma iron. J Biol Chem 155, 653660.
10. Ruegamer, WR, Michaud, L & Elvehjem, CA (1945) A simplified method for the determination of iron in milk. J Biol Chem 158, 573576.
11. Wrightson, FM (1949) Determination of traces of iron, nickel, and vanadium in petroleum oils. Anal Chem 21, 15431545.
12. Grotto, HZW (2009) Interpretação Clínica do Hemograma (Clinical Interpretation of Blood Counts), Série Clínica Médica Ciência e Arte (Medical Clinic Series Science and Arts), 1st ed. São Paulo: Atheneu.
13. World Health Organization (2001) Iron Deficiency Anaemia: Assessment, Prevention and Control, A Guide for Programme Managers. Geneva: WHO.
14. Cook, JD (2005) Diagnosis and management of iron-deficiency anaemia. Best Pract Res Clin Haematol 18, 319332.
15. Weiss, G & Goodnough, LT (2005) Anemia of chronic disease. N Engl J Med 352, 10111023.
16. Shayeghi, M, Latunde-Dada, GO, Oakhill, JS, et al. (2005) Identification of an intestinal heme transporter. Cell 122, 789801.
17. Canavesi, E, Alfieri, C, Pelusi, S, et al. (2012) Hepcidin and HFE protein: iron metabolism as a target for the anemia of chronic kidney disease. World J Nephrol 1, 166176.
18. De Domenico, I, Ward, DM, Musci, G, et al. (2007) Evidence for the multimeric structure of ferroportin. Blood 109, 22052209.
19. Balesaria, S, Hanif, R, Salama, MF, et al. (2012) Fetal iron levels are regulated by maternal and fetal Hfe genotype and dietary iron. Haematologica 97, 661669.
20. Ganz, T (2007) Molecular control of iron transport. J Am Soc Nephrol 18, 394400.
21. Takami, T & Sakaida, I (2011) Iron regulation by hepatocytes and free radicals. J Clin Biochem Nutr 48, 103106.
22. Mast, AE, Blinder, MA & Dietzen, DJ (2008) Reticulocyte hemoglobin content. Am J Hematol 83, 307310.
23. Srinoun, K, Svasti, S, Chumworathayee, W, et al. (2009) Imbalanced globin chain synthesis determines erythroid cell pathology in thalassemic mice. Haematologica 94, 12111219.
24. Keel, SB, Doty, RT, Yang, Z, et al. (2008) A heme export protein is required for red blood cell differentiation and iron homeostasis. Science 319, 825828.
25. Doty, RT, Phelps, SR, Shadle, C, et al. (2015) Coordinate expression of heme and globin is essential for effective erythropoiesis. J Clin Invest 125, 46814691.
26. Alcantara, O, Kalidas, M, Baltathakis, I, et al. (2001) Expression of multiple genes regulating cell cycle and apoptosis in differentiating hematopoietic cells is dependent on iron. Exp Hematol 29, 10601069.
27. Callens, C, Coulon, S, Naudin, J, et al. (2010) Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia. J Exp Med 207, 731750.
28. Xie, W, Lorenz, S, Dolder, S, et al. (2016) Extracellular iron is a modulator of the differentiation of osteoclast lineage cells. Calcif Tissue Int 98, 275283.
29. Djeha, A, Pérez-Arellano, JL, Brock, JH, et al. (1993) Transferrin synthesis by mouse lymph node and peritoneal macrophages: iron content and effect on lymphocyte proliferation. Blood 81, 10461050.
30. Kinik, ST, Tuncer, AM & Altay, C (1999) Transferrin receptor on peripheral blood lymphocytes in iron deficiency anaemia. Br J Haematol 104, 494498.
31. Seligman, PA, Kovar, J & Gelfand, EW (1992) Lymphocyte proliferation is controlled by both iron availability and regulation of iron uptake pathways. Pathobiology 60, 1926.
32. Golding, S & Young, SP (1995) Iron requirements of human lymphocytes: relative contributions of intra- and extra-cellular iron. Scand J Immunol 41, 229236.
33. Zandman-Goddard, G & Shoenfeld, Y (2008) Hyperferritinemia in autoimmunity. Isr Med Assoc J 10, 8384.
34. Bowlus, CL (2003) The role of iron in T cell development and autoimmunity. Autoimmun Rev 2, 7378.
35. Walker, EM Jr & Walker, SM (2000) Effects of iron overload on the immune system. Ann Clin Lab Sci 30, 354365.
36. Ali, S, Pimentel, JD, Munoz, J, et al. (2012) Iron overload in allogeneic hematopoietic stem cell transplant recipients. Arch Pathol Lab Med 136, 532538.
37. Trottier, BJ, Burns, LJ, DeFor, TE, et al. (2013) Association of iron overload with allogeneic hematopoietic cell transplantation outcomes: a prospective cohort study using R2-MRI-measured liver iron content. Blood 122, 16781684.
38. Lu, W, Zhao, M, Rajbhandary, S, et al. (2013) Free iron catalyzes oxidative damage to hematopoietic cells/mesenchymal stem cells in vitro and suppresses hematopoiesis in iron overload patients. Eur J Haematol 91, 249261.
39. Efebera, YA, Thandi, RS, Saliba, RM, et al. (2009) The impact of pre-stem cell transplant ferritin level on late transplant complications: an analysis to determine the potential role of iron overload on late transplant outcomes. Internet J Hematol 7, 9127.
40. Kim, YR, Kim, JS, Cheong, JW, et al. (2008) Transfusion-associated iron overload as an adverse risk factor for transplantation outcome in patients undergoing reduced-intensity stem cell transplantation for myeloid malignancies. Acta Haematol 120, 182189.
41. Kanda, J, Kawabata, H & Chao, NJ (2011) Iron overload and allogeneic hematopoietic stem-cell transplantation. Expert Rev Hematol 4, 7180.
42. Pullarkat, V (2010) Iron overload in patients undergoing hematopoietic stem cell transplantation. Adv Hematol 2010, 345756.
43. Chai, X, Li, D, Cao, X, et al. (2015) ROS-mediated iron overload injures the hematopoiesis of bone marrow by damaging hematopoietic stem/progenitor cells in mice. Sci Rep 5, 10181.
44. Tataranni, T, Agriesti, F, Mazzoccoli, C, et al. (2015) The iron chelator deferasirox affects redox signalling in haematopoietic stem/progenitor cells. Br J Haematol 170, 236246.
45. Zhang, Y, Zhai, W, Zhao, M, et al. (2015) Effects of iron overload on the bone marrow microenvironment in mice. PLOS ONE 10, e0120219.
46. Suda, T, Takubo, K & Semenza, GL (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9, 298310.
47. Keen, CL, Ensunsa, JL, Watson, MH, et al. (1999) Nutritional aspects of manganese from experimental studies. Neurotoxicology 20, 213223.
48. Furst, A (1978) Tumorigenic effect of an organomanganese compound on F344 rats and Swiss albino mice: brief communication. J Natl Cancer Inst 60, 11711173.
49. Carl, GF & Gallagher, BB (1994) Manganese and epilepsey. In Manganese in Health and Disease, pp. 133143 [DJ Klimis-Tavantzis, editor]. Boca Raton, FL: CRC Press.
50. Keen, CL, Ensunsa, JL & Clegg, MS (2000) Manganese metabolism in animals and humans including the toxicity of manganese. In Metal Ions in Biological Systems: Volume 37: Manganese and its Role in Biological Processes, pp. 89121 [A Sigel and H Sigel, editors]. New York: Marcel Dekker.
51. Crossgrove, J & Zheng, W (2004) Manganese toxicity upon overexposure. NMR Biomed 17, 544553.
52. Finley, JW & Davis, CD (1999) Manganese deficiency and toxicity: are high or low dietary amounts of manganese cause for concern? Biofactors 10, 1524.
53. Kizaki, M, Sakashita, A, Karmakar, A, et al. (1993) Regulation of manganese superoxide dismutase and other antioxidant genes in normal and leukemic hematopoietic cells and their relationship to cytotoxicity by tumor necrosis factor. Blood 82, 11421150.
54. Lebovitz, RM, Zhang, H, Vogel, H, et al. (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A 93, 97829787.
55. Friedman, JS, Rebel, VI, Derby, R, et al. (2001) Absence of mitochondrial superoxide dismutase results in a murine hemolytic anemia responsive to therapy with a catalytic antioxidant. J Exp Med 193, 925934.
56. Case, AJ, Madsen, JM, Motto, DG, et al. (2013) Manganese superoxide dismutase depletion in murine hematopoietic stem cells perturbs iron homeostasis, globin switching, and epigenetic control in erythrocyte precursorcells. Free Radic Biol Med 56, 1727.
57. Moore, B (1911) In memory of Sidney Ringer [1835–1910]: some account of the fundamental discoveries of the great pioneer of the bio-chemistry of crystallo-colloids in living cells. Biochem J 5, i.b3xix.
58. Bootman, MD (2012) Calcium signaling. Cold Spring Harb Perspect Biol 4, a011171.
59. Berridge, MJ, Bootman, MD & Roderick, L (2003) Calcium signalling: dynamics, homeostasis and remodeling. Nat Rev Mol Cell Biol 4, 517529.
60. Dupont, G, Combettes, L, Bird, GS, et al. (2011) Calcium oscillations. Cold Spring Harb Perspect Biol 3, a004226.
61. Paredes-Gamero, EJ, Barbosa, CMV & Ferreira, AT (2012) Calcium signaling as a regulator of hematopoiesis. Front Biosci 4, 13751384.
62. Leon, CM, Barbosa, CM, Justo, GZ, et al. (2011) Requirement for PLCγ2 in IL-3 and GM-CSF-stimulated MEK/ERK phosphorylation in murine and human hematopoietic stem/progenitor cells. J Cell Physiol 226, 17801792.
63. Adams, GB, Chabner, KT, Alley, IR, et al. (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439, 599603.
64. Pozzan, T, Rizzuto, R, Volpe, P, et al. (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74, 595636.
65. Webb, SE, Li, WM & Miller, AL (2008) Calcium signalling during the cleavage period of zebrafish development. Philos Trans R Soc Lond B Biol Sci 363, 13631369.
66. Wölwer, CB, Pase, LB, Russell, SM, et al. (2016) Calcium signaling is required for erythroid enucleation. PLOS ONE 11, e0146201.
67. Drueke, TB (2006) Haematopoietic stem cells – role of calcium-sensing receptor in bone marrow homing. Nephrol Dial Transplant 21, 20722074.
68. Barbosa, CM, Bincoletto, C, Barros, CC, et al. (2014) PLCγ2 and PKC are important to myeloid lineage commitment triggered by M-SCF and G-CSF. J Cell Biochem 115, 4251.
69. Paredes-Gamero, EJ, Leon, CM, Borojevic, R, et al. (2008) Changes in intracellular Ca2+ levels induced by cytokines and P2 agonists differentially modulate proliferation or commitment with macrophage differentiation in murine hematopoietic cells. J Biol Chem 283, 3190931919.
70. Barbosa, CMV, Leon, CMMP, Nogueira-Pedro, A, et al. (2011) Differentiation of hematopoietic stem cell and myeloid populations by ATP is modulated by cytokines. Cell Death Dis 2, e165.
71. Rubin, H (1975) Central role for magnesium in coordinate control of metabolism and growth in animal cells. Proc Natl Acad Sci U S A 72, 35513555.
72. Birch, NG (1993) Magnesium and the Cell. San Diego, CA: Academic Press.
73. Cowan, JA (1995) The Biological Chemistry of Magnesium. New York: VCH Publishers.
74. Walker, GM (1986) Magnesium and cell cycle control: an update. Magnesium 5, 923.
75. Cameron, IL & Smith, NK (1989) Cellular concentration of magnesium and other ions in relation to protein synthesis, cell proliferation and cancer. Magnesium 8, 3144.
76. Wolf, FI & Cittadini, A (1999) Magnesium in cell proliferation and differentition. Front Biosci 4, 607617.
77. Stritt, S, Nurden, P, Favier, R, et al. (2016) Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg2+ homeostasis and cytoskeletal architecture. Nat Commun 7, 11097.
78. Elin, RJ, Utter, A, Tan, HK, et al. (1980) Effect of magnesium deficiency on erythrocyte aging in rats. Am J Pathol 100, 765778.
79. Fedorocko, P, Macková, NO, Sándorcínová, Z, et al. (2000) Influence of age and K, Mg aspartate (Cardilan) on murine haemopoiesis. Mech Ageing Dev 119, 159170.
80. Lang, F (2007) Mechanisms and significance of cell volume regulation. J Am Coll Nutr 26, 613S623S.
81. Singh, S, Pandey, KB & Rizvi, SI (2016) Erythrocyte senescence and membrane transporters in young and old rats. Arch Physiol Biochem 122, 228234.
82. Blostein, R, Drapeau, P, Benderoff, S, et al. (1983) Changes in Na+-ATPase and Na,K-pump during maturation of sheep reticulocytes. Can J Biochem Cell Biol 61, 2328.
83. Lauf, PK & Mangor-Jensen, A (1984) Effects of A23187 and Ca2+ on volume- and thiol-stimulated, ouabain-resistant K+C1 fluxes in low K+ fluxes in low K+ sheep erythrocytes. Biochem Biophys Res Commun 125, 790796.
84. Brugnara, C & Tosteson, DC (1987) Cell volume, K+ transport and cell density in human erythrocytes. Am J Physiol 252, C269C276.
85. Canessa, M, Fabry, ME, Blumenfeld, N, et al. (1987) Volume-stimulated, Cl-dependent K+ efflux is highly expressed in young human red cells containing normal hemoglobin or HbS. J Membr Biol 97, 97105.
86. Furukawa, H, Bilezikian, JP & Loeb, JN (1981) Potassium fluxes in the rat reticulocyte. Ouabain sensitivity and changes in the maturation. Biochim Biophys Acta 649, 625632.
87. Kosower, NS (1993) Altered properties of erythrocytes in the aged. Am J Hematol 42, 241247.
88. Mairbäurl, H, Schulz, S & Hoffman, JF (2000) Cation transport and cell volume changes in maturing rat reticulocytes. Am J Physiol Cell Physiol 279, C1621C1630.
89. Gallicchio, VS & Murphy, MJ Jr (1979) Erythropoiesis in vitro. III. The role of potassium ions in erythroid colony formation. Exp Hematol 7, 225230.
90. Gallicchio, VS & Murphy, MJ Jr (1983) Cation influences on in vitro growth of erythroid stem cells (CFU-e and BFU-e). Cell Tissue Res 233, 175181.
91. Mager, DL, MacDonald, ME & Bernstein, A (1979) Growth in high-K+ medium induces Friend cell differentiation. Dev Biol 70, 268273.
92. Shirihai, O, Merchav, S, Attali, B, et al. (1996) K+ channel antisense oligodeoxynucleotides inhibit cytokine-induced expansion of human hemopoietic progenitors. Pflugers Arch 431, 632638.
93. Shirihai, O, Attali, B, Dagan, D, et al. (1998) Expression of two inward rectifier potassium channels is essential for differentiation of primitive human hematopoietic progenitor cells. J Cell Physiol 177, 197205.
94. Banati, RB, Hoppe, D, Gottmann, K, et al. (1991) A subpopulation of bone marrow-derived macrophage like cells share a unique ion channel pattern wit microglia. J Neurosci Res 30, 593600.
95. Kettenmann, H, Hoppe, D, Gottmann, K, et al. (1990) Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophages. J Neurosci Res 26, 278287.
96. Wieland, SJ, Chou, RH & Chen, TA (1987) Elevation of a potassium current in differentiating human leukemic (HL-60) cells. J Cell Physiol 132, 371375.
97. McCann, FV, Keller, TM & Guyre, PM (1987) Ion channels in human macrophages compared with the U-937 cell line. J Membrane Biol 96, 5764.
98. Lu, L, Yang, T, Markakis, D, et al. (1993) Alterations in a voltage-gated K+ current during the differentiation of ML-1 human myeloblastic leukemia cells. J Membrane Biol 132, 267274.
99. Expert Group on Vitamins and Minerals (2003) Safe Upper Levels for Vitamins and Minerals. London: Food Standards Agency.
100. Kobayashi, M & Shimizu, S (1999) Cobalt proteins. Eur J Biochem 26, 19.
101. Banerjee, R (1997) The Yin-Yang of cobalamin biochemistry. Chem Biol 4, 175186.
102. Barceloux, DG (1999) Cobalt. Clin Toxicol 37, 201216.
103. Institute of Medicine (1998) Cobalt. In Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline, pp. 306356. Washington, DC: National Academies Press.
104. Varela-Moreiras, G, Murphy, MM & Scott, JM (2009) Cobalamin, folic acid, and homocysteine. Nutr Rev 67, S69S72.
105. Andrès, E, Affenberger, S, Zimmer, J, et al. (2006) Current hematological findings in cobalamin deficiency: a study of 201 consecutive patients with documented cobalamin deficiency. Clin Lab Haematol 28, 5056.
106. Koury, MJ & Ponka, P (2004) New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr 24, 105131.
107. Waltner, K & Waltner, K (1929) Kobalt und blut (Cobalt and blood). Klin Wochenschr 8, 313.
108. Weissbecker, L (1950) Die kobalttherapie (Cobalt therapy). Dtsch Med Wochenschr 75, 116118.
109. Thorling, EB & Erslev, AJ (1972) The effect of some erythropoietic agents on the “tissue” tensions of oxygen. Br J Haematol 23, 483490.
110. Jelkmann, W (2012) The disparate roles of cobalt in erythropoiesis, and doping relevance. Open J Hematol 3, 36.
111. Berk, L, Burchenaj, LH & Castlew, B (1949) Erythropoietic effect of cobalt in patients with or without anemia. N Engl J Med 240, 754761.
112. Gardnerf, H (1953) The effect of cobaltous chloride in the anemia associated with chronic renal disease. J Lab Clin Med 41, 5664.
113. Duckham, JM & Lee, HA (1976) The treatment of refractory anaemia of chronic renal failure with cobalt chloride. Q J Med 45, 277294.
114. De Boeck, M, Kirsch-Volders, M & Lison, D (2003) Cobalt and antimony: genotoxicity and carcinogenicity. Mutat Res 533, 135152.
115. World Health Organization International Agency for Research on Cancer (2006) IARC monographs on the evaluation of carcinogenic risks to humans: volume 86: cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. http://monographs.iarc.fr/ENG/Monographs/vol86/mono86.pdf (accessed May 2018).
116. Niwattisaiwong, S, Burman, KD & Li-ng, M (2017) Iodine deficiency: clinical implications. Cleve Clin J Med 84, 236244.
117. Brent, G (2012) Mechanisms of thyroid hormone action. J Clin Invest 122, 30353043.
118. Mondal, S, Raja, K, Schweizer, U, et al. (2016) Chemistry and biology in the biosynthesis and action of thyroid hormones. Angew Chem Int Ed Engl 55, 76067630.
119. Flores-Morales, A, Gullberg, H, Fernandez, L, et al. (2002) Patterns of liver gene expression governed by TRβ. Mol Endocrinol 16, 12571268.
120. Hara, M, Suzuki, S, Mori, J, et al. (2000) Thyroid hormone regulation of apoptosis induced by retinoic acid in promyeloleukemic Hl-60 cells: studies with retinoic acid receptor-specific and retinoid X receptor-specific ligands. Thyroid 10, 10231034.
121. Lin, HY, Davis, FB, Gordinier, JK, et al. (1999) Thyroid hormone induces activation of mitogen-activated protein kinase in cultured cells. Am J Physiol 276, C1014C1024.
122. Wu, SY, Green, WL, Huang, WS, et al. (2005) Alternate pathways of thyroid hormone metabolism. Thyroid 15, 943958.
123. Kocher, T (1908) Blutuntersuchungen bei Morbus Basedowii mit Beiträgen zur Frühdiagnose u. Theorie der Krankheit (Blood tests in Basedowii disease with contributions to early diagnosis and the theory of illness). Arch Klin Chir 87, 131.
124. Evans, ES, Rosenberg, LL & Simpson, ME (1961) Erythropoietic response to calorigenic hormones. Endocrinology 68, 517532.
125. Tudhope, GR & Wilson, GM (1960) Anemia in hypothyroidism. Q J Med 29, 513533.
126. Wu, Y & Koenig, RJ (2000) Gene regulation by thyroid hormone. Trends Endocrinol Metab 11, 207211.
127. Golde, DW, Bersch, N, Chopra, IJ, et al. (1977) Thyroid hormones stimulate erythropoiesis in vitro . Br J Haematol 37, 173177.
128. Gruber, R, Czerwenka, K, Wolf, F, et al. (1999) Expression of the vitamin D receptor, of estrogen and thyroid hormone receptor α- and β-isoforms, and of the androgen receptor in cultures of native mouse bone marrow and stromal/osteoblastic cells. Bone 24, 465473.
129. Milne, M, Kang, MI, Cardona, G, et al. (1999) Expression of multiple thyroid hormone receptor isoforms in rat femoral and vertebral bone marrow and in bone marrow osteogenic cultures. J Cell Biochem 74, 684693.
130. Grymuła, K, Paczkowska, E, Dziedziejko, V, et al. (2007) The influence of 3,3’,5-triiodo-l-thyronine on human haematopoiesis. Cell Prolif 40, 302315.
131. Kawa, MP, Grymula, K, Paczkowska, E, et al. (2010) Clinical relevance of thyroid dysfunction in human haematopoiesis: biochemical and molecular studies. Eur J Endocrinol 162, 295305.
132. Bauer, A, Mikulits, W, Lagger, G, et al. (1998) The thyroid hormone receptor function as a ligand-operated developmental switch between proliferation and differentiation of erythroid progenitors. EMBO J 17, 42914303.
133. Tran, L, Batech, M, Rhee, CM, et al. (2016) Serum phosphorus and association with anemia among a large diverse population with and without chronic kidney disease. Nephrol Dial Transplant 31, 636645.
134. Raanani, P, Levi, I, Holzman, F, et al. (2001) Engraftment-associated hypophosphatemia – the role of cytokine release and steep leukocyte rise post stem cell transplantation. Bone Marrow Transplant 27, 311317.
135. Uçkan, D, Cetin, M, Dida, A, et al. (2003) Hypophosphatemia and hypouricemia in pediatric allogeneic bone marrow transplant recipients. Pediatr Transplant 7, 98101.
136. Clark, RE & Lee, ES (1995) Severe hypophosphataemia during stem cell harvesting in chronic myeloid leukaemia. Br J Haematol 90, 450452.
137. Crook, M, Swaminathan, R & Schey, S (1996) Hypophosphataemia in patients undergoing bone marrow transplantation. Leuk Lymphoma 22, 335337.
138. Kovesdy, CP, Mucsi, I, Czira, ME, et al. (2011) Association of serum phosphorus level with anemia in kidney transplant recipients. Transplantation 91, 875882.
139. Wojcicki, JM (2013) Hyperphosphatemia is associated with anemia in adults without chronic kidney disease: results from the National Health and Nutrition Examination Survey (NHANES): 2005–2010. BMC Nephrol 14, 178.
140. Kuroo, M (2014) New developments in CKD-MBD. Why is phosphate overload harmful? (article in Japanese). Clin Calcium 24, 17851792.
141. Navarro-Alarcon, M & Cabrera-Vique, C (2008) Selenium in food and the human body: a review. Sci Total Environ 400, 115141.
142. Tinggi, U (2003) Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett 137, 103110.
143. Puspitasari, IM, Abdulah, R, Yamazaki, C, et al. (2014) Updates on clinical studies of selenium supplementation in radiotherapy. Radiat Oncol 9, 125.
144. Kaushal, N, Hegde, S, Lumadue, J, et al. (2011) The regulation of erythropoiesis by selenium in mice. Antioxid Redox Signal 14, 14031412.
145. Costa, NA, Gut, AL, Pimentel, JA, et al. (2014) Erythrocyte selenium concentration predicts intensive care unit and hospital mortality in patients with septic shock: a prospective observational study. Crit Care 18, R92.
146. Gandhi, UH, Kaushal, N, Hegde, S, et al. (2014) Selenium suppresses leukemia through the action of endogenous eicosanoids. Cancer Res 74, 38903901.
147. Rosenfeld, I & Beath, OA (1946) The influence of protein diets on selenium poisoning. Am J Vet Res 7, 5256.
148. Grubman, A & White, AR (2014) Copper as a key regulator of cell signalling pathways. Expert Rev Mol Med 16, e11.
149. Huang, X, Pierce, LJ, Cobine, PA, et al. (2009) Copper modulates the differentiation of mouse hematopoietic progenitor cells in culture. Cell Transplant 18, 887897.
150. Williams, DM (1983) Copper deficiency in humans. Semin Hematol 20, 118128.
151. Choi, JW & Kim, SK (2005) Relationships of lead, copper, zinc, and cadmium levels versus hematopoiesis and iron parameters in healthy adolescents. Ann Clin Lab Sci 35, 428434.
152. Bustos, RI, Jensen, EL, Ruiz, LM, et al. (2013) Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells. Biochem Biophys Res Commun 437, 426432.
153. Bae, B & Percival, SS (1993) Retinoic acid-induced HL-60 cell differentiation is augmented by copper supplementation. J Nutr 123, 9971002.
154. Zhou, XY, Zhang, T, Ren, L, et al. (2016) Copper elevated embryonic hemoglobin through reactive oxygen species during zebrafish erythrogenesis. Aquat Toxicol 175, 111.
155. Boggs, DR & Joyce, RA (1983) The hematopoietic effects of lithium. Semin Hematol 20, 129138.
156. Ferensztajn-Rochowiak, E & Rybakowski, JK (2016) The effect of lithium on hematopoietic, mesenchymal and neural stem cells. Pharmacol Rep 68, 224230.
157. McGrath, HE, Wade, PM, Kister, VK, et al. (1992) Lithium stimulation of HPP-CFC and stromal growth factor production in murine Dexter culture. J Cell Physiol 151, 276286.
158. McGrath, HE, Liang, CM, Alberico, TA, et al. (1987) The effect of lithium on growth factor production in long-term bone marrow cultures. Blood 70, 11361142.
159. Hager, ED, Dziambor, H, Winkler, P, et al. (2002) Effects of lithium carbonate on hematopoietic cells in patients with persistent neutropenia following chemotherapy or radiotherapy. J Trace Elem Med Biol 16, 9197.
160. Gallicchio, VS & Chen, MG (1980) Modulation of murine pluripotential stem cell proliferation in vivo by lithium carbonate. Blood 56, 11501152.
161. Gallicchio, VS, Hughes, NK, Tse, KF, et al. (1995) Effect of lithium in immunodeficiency: improved blood cell formation in mice with decreased hematopoiesis as the result of LP-BM5 MuLV infection. Antiviral Res 26, 189202.
162. Walasek, MA, Bystrykh, L, van den Boom, V, et al. (2012) The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation. Blood 119, 30503059.
163. Vallee, BL & Falchuk, KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73, 79118.
164. Berg, JM (1986) Potential metal-binding domains in nucleic acid binding proteins. Science 232, 485487.
165. Ackland, ML & Michalczyk, AA (2016) Zinc and infant nutrition. Arch Biochem Biophys 611, 5157.
166. Murakami, K, Whiteley, MK & Routtenberg, A (1987) Regulation of protein kinase C activity by cooperative interaction of Zn2+ and Ca2 + J Biol Chem 262, 1390213906.
167. Chen, YH, Shiu, JR, Ho, CL, et al. (2017) Zinc as a signal to stimulate red blood cell formation in fish. Int J Mol Sci 18, E138.
168. Chirulescu, Z, Suciu, A, Tănăsescu, C, et al. (1990) Possible correlation between the zinc and copper concentrations involved in the pathogenesis of various forms of anemia. Med Interne 28, 3135.
169. Livingstone, C (2015) Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract 30, 371382.
170. King, LE, Osati-Ashtiani, F & Fraker, PJ (1995) Depletion of cells of the B lineage in the bone marrow of zinc-deficient mice. Immunology 85, 6973.
171. Fraker, PJ & King, LE (2001) A distinct role for apoptosis in the changes in lymphopoiesis and myelopoiesis created by deficiencies in zinc. FASEB J 15, 25722578.
172. Cook-Mills, JM & Fraker, PJ (1993) Functional capacity of the residual lymphocytes from zinc-deficient adult mice. Br J Nutr 69, 835848.

Keywords

A review of select minerals influencing the haematopoietic process

  • Dalila Cunha Oliveira (a1), Amanda Nogueira-Pedro (a1), Ed Wilson Santos (a1), Araceli Hastreiter (a1), Graziela Batista Silva (a1), Primavera Borelli (a1) and Ricardo Ambrósio Fock (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed