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Abstract

Micronutrients are indispensable for adequate metabolism, such as biochemical function and cell production. The production of blood cells is
named haematopoiesis and this process is highly consuming due to the rapid turnover of the haematopoietic system and consequent demand
for nutrients. It is well established that micronutrients are relevant to blood cell production, although some of the mechanisms of how
micronutrients modulate haematopoiesis remain unknown. The aim of the present review is to summarise the effect of Fe, Mn, Ca, Mg, Na, K,
Co, iodine, P, Se, Cu, Li and Zn on haematopoiesis. This review deals specifically with the physiological requirements of selected
micronutrients to haematopoiesis, showing various studies related to the physiological requirements, deficiency or excess of these minerals on
haematopoiesis. The literature selected includes studies in animal models and human subjects. In circumstances where these minerals have
not been studied for a given condition, no information was used. All the selected minerals have an important role in haematopoiesis by
influencing the quality and quantity of blood cell production. In addition, it is highly recommended that the established nutrition
recommendations for these minerals be followed, because cases of excess or deficient mineral intake can affect the haematopoiesis process.
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Introduction the differentiation and proliferation processes intrinsic to the
complex haematopoietic process, although some of the
mechanisms of how micronutrients modulate haematopoiesis
are still poorly known.

Furthermore, intake recommendations
manifestations, especially with respect to haematopoiesis, in
cases of mineral deficiency are usually known. However,
in situations where there is increased mineral intake or bioa-
vailability, the effects on haematopoiesis are poorly understood.

The aim of the present review is to highlight the role of the
minerals Fe, Ca, Mn, Na, K, Co, iodine, P, Se, Cu, Li and Zn in
haematopoiesis, based on data available in the literature and
focusing on the effects of these minerals in modulating the
haematopoietic process, either positively or negatively. Under-

o : i standing how micronutrients influence the haematopoietic pro-
are required in each production phase, from the maintenance of . o . S
) cess is relevant to highlighting the importance of each nutrient in
HSC self-renewal until the release of mature cells of each > . -
) ) -3 the complex physiology of blood cell production, providing
lineage into the bloodstream™ ™. e ) . . . ]
X ) . . insights regarding the roles of minerals in physiological process

It is well established that macronutrients such as protein, ; . . . .

. ) such as cell proliferation or in pathologies such as anaemia and
carbohydrates and lipids are required for successful haemato- . . . . .

o , o i leukaemia. The main findings of the present review are compiled

poiesis as blood cells begin forming in the embryo and continue

Haematopoiesis is the process of blood cell production. Blood
is a tissue with a high renewal rate due to the physiologically
short life span of cells in the circulation. The production of these
cells is dependent on a highly specialised bone marrow
microenvironment, which regulates the quiescence, differ-
entiation and self-renewal of haematopoietic stem cells
(HSC)™™®. HSC have the ability to proliferate and differentiate
to produce progenitor lineage cells and consequently mature to
form the following cells: leucocytes (which include neutrophils,
eosinophils, basophils, lymphocytes and monocytes), ery-
throcytes and platelets®. This process has a rapid turnover rate
and is highly consuming due to the high demand for nutrients
needed for constant blood cell production. Specific nutrients

® as well as clinical

in Table 1.
until the end of life. Nutrient requirements are maintained
throughout life due to continual blood cell formation and
(G-5 i ; Iron
replacement . Micronutrients are also relevant to blood cell
production: each mineral will be required in distinct production The first recordings in the literature concerning the presence of
stages of each blood cell lineage. Micronutrients fulfill roles in Fe in the blood are dated more than one century ago and report

Abbreviations: CFU, colony-forming units; CSF, colony-stimulating factor; EPO, erythropoietin; HIF, hypoxia-inducible transcription factor; HSC,
haematopoietic  stem  cells; IP3;, inositol 1,4,5-trisphosphate; MnSOD, Mn-dependent superoxide dismutase; PLC, phospholipase C.
T;, trilodothyronine; Ty, tetraiodothyronine; TfR1, transferrin receptor 1; TR, thyroid hormone receptor.
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Table 1. Main findings of the effects of minerals on haematopoiesis

Reference

Main findings

Cell or tissue

Species

Fe
Doty et al. (2015)%
Alcantara et al. (2001)®®

Callens et al. (2010)@"

Xie et al. (2016)®®

Djeha et al. (1993)@%

Kinik et al. (1999)©0
Golding & Young (1995)©2

Ali et al. (2012)©®)

Trottier et al. (2013)¢7

Lu et al. (2013)®®

Efebera et al. (2009)©°

Tataranni et al. (2015)“4

Zhang et al. (2015)“%)

Mn
Kizaki et al. (1993)®®

Lebovitz et al. (1996)%
Friedman et al. (2001)®%
Case et al. (2013)©®

Ca
Leon et al. (2011)©2

Adams et al. (2006)©®

Wolwer et al. (2016)©®
Mg
Elin et al. (1980)®

Fedorocko et al. (2000)"®

K
Sing et al. (2016)®"

Brugnara & Tosteson (1987)®%

Shirihai et al. (1998)©

Haeme excess causes erythroid marrow failure

Fe deprivation induces apoptosis-related genes
inhibition

Fe availability modulates myeloid cell differentiation in
normal and pathological conditions

Fe homeostasis contributes to adjustment of osteoclast
development

Transferrin synthesised by macrophages supports
lymphocyte proliferation, eliminating effect of
hypoferraemia on the immune system

Fe-deficiency anaemia affects CD71 expression in
peripheral blood lymphocytes

Intra- and extracellular Fe differentially supports the
proliferation of lymphocytes

Fe overload is a complication associated with
haematopoietic stem cell transplant and
bloodstream infection

Survival or complications in allogeneic transplant are
not associated with liver Fe overload

Fe overload induces ROS-related signalling protein
mediating haematopoietic cell damage

Ferritin level pre-haematopoietic stem cell transplant
has an impact on post-haematopietic stem cell
transplant

Deferasirox chelates Fe and induces ROS signalling
activation, influencing self-renewal/differentiation of
haematopoietic stem cells

Fe overload impairs bone marrow microenvironment,
including the quantity and quality of bone marrow
mesenchymal stem cells

TNF up-regulates the levels of superoxide in
haematopoietic cells, leading to cell injury in the
absence of Mn-dependent antioxidant enzyme
pathways

SOD deficiency leads to haematopoiesis
malfunction

Loss of SOD2 in erythroid progenitor cells enhances
oxidative damage, damaging membrane, and
reducing survival of erythrocytes

Loss of SOD2 disrupts normal Fe homeostasis

Ca modulates MEK/ERK pathways, influencing
proliferation and differentiation of haematopoietic
precursors

Ca-sensing receptor is related to haematopoietic stem
cell retention in close physical proximity to the
endosteal surface

Erythroblasts require Ca uptake to enucleate

Mg deficiency leads to erythrocyte biochemical and
morphological abnormalities
K and Mg increased spleen erythropoiesis in elderly

Impaired ion homeostasis due to altered membrane
transporters including functional and compositional
changes may be one of the reasons responsible
behind rat erythrocyte ageing

K transport plays a role in determining the erythrocyte
water and cation content

Variable expression of two essential inward rectifying K
channels early in the course of haematopoietic
progenitor cell differentiation may play a potentially
important role in K homeostasis in these cells

Erythroblasts
HL-60 promonocytes

Fresh AML blasts and HL-60
cells, CD34* cord blood
progenitors

Bone marrow, osteoclast
lineage cells

Lymph node cells, peritoneal
cells

Blood

T lymphocytes

Liver

Serum, liver

Bone marrow mononuclear
cells, umbilical cord-
derived mesenchymal

stem cells
Blood

Peripheral blood
mononuclear cells
Bone marrow-derived

mesenchymal stem cells

Cell lines KG-1, HL-60, ML-3,
THP-1, HEL
Embryos, bone marrow

Embryos, blood

Blood, spleen

Bone marrow

Haematopoietic stem cells

Spleen
Erythrocytes
Spleen, blood

Cell membrane

Erythrocytes

Haematopoietic progenitor
cells

Mouse
Human cell line

Human and mouse

Mouse

Mouse

Human

Human

Human

Human

Human

Human

Human

Mouse

Human

Mouse

Mouse

Mouse

Human and mouse

Mouse

Mouse

Rat

Mouse

Rat

Human

Human
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Golde et al. (1977)(12"
Gruber et al. (1999)(12®
Milne et al. (1999)(129

Grymuta et al. (2007)(13®
Kawa et al. (2010)('3"

Bauer et al. (1998)(132

P
Raanani et al. (2001)('3%

Uckan et al. (2003)('3%)

Kovesdy et al. (2011)(13®

mediated and results in potentiated STAT1a
activation and enhanced interferon-y activity

Thyroid hormones have a direct effect on erythroid
precursor proliferative capacity

Single cells exhibit wide variations in intensity of
specific signals for all the receptors investigated

Three predominant TR isoforms are highly expressed
in bone and osteoblasts from femurs and vertebrae

A direct influence of T3 on haematopoiesis indicated

TR expression in human haematopoietic cells depends
on thyroid hormone status, both hypo- and
hyperthyroidism significantly influence clonogenicity
and induce apoptosis in CD34*-enriched
haematopoietic progenitor cells

The crucial role of the mutations activating v-erbA as
an oncogene is to ‘freeze’ c-ErbA/TRa in its non-
liganded, repressive conformation and to facilitate its
overexpression

Hypophosphataemia occurs in the post-transplant
period, due to an increased consumption by the
dividing leucocytes

Paediatric allogeneic bone marrow transplant leads to
hypophosphataemia

Higher serum P is associated with anaemia in kidney
transplant recipients

Bone marrow
Bone marrow
Bone marrow
Cord blood

Haematopoietic progenitor
cells

Culture media depleted from
thyroid hormone (T3) and
retinoids

Blood

Blood

Serum

Reference Main findings Cell or tissue Species
Kettenmann et al. (1990)©% Cultured microglial cells have a distinct pattern of Microglial cells Human
membrane channels different from peritoneal
macrophages
Wieland et al. (1987)©® Increase of voltage-activated current in differentiation Leukaemia (HL-60) cells Human
toward the macrophage
Gallicchio & Murphy Jr (1979)® K increased the number of erythroid progenitor cells Bone marrow Murine
Banati et al. (1991)©®% In the bone marrow distinct pools of precursor cells Macrophages Mouse
exist, possibly reflecting an early differential lineage
determination for body and brain macrophages
Lu et al. (1993)©® The K* channels are activated upon the stimulation of ~ ML-1 cells Human
proliferation in lymphoid cells exposed to mitogens
McCann et al. (1987)®7 Differences in ion channel properties suggest Macrophages and U-937 Human
fundamentally different behaviours between these cells
two cell types at the level of the cell membrane
Furukawa et al. (1981)©® The enhanced rate of K* accumulation in the Reticulocyte Mouse
reticulocyte can be quantitatively attributed to an
increased number of pump units
Canessa et al. (1987)©® The large volume-stimulated K:Cl efflux in AA (normal  Erythrocytes Human
Hb) young cells raises the possibility that these
fluxes may be involved in the maturation of
erythropoietic precursors
Shirihai et al. (1996)© An essential role for Kir suggested in the process of Haematopoietic progenitor Human
cytokine-induced primitive progenitor cell growth and cells
differentiation
Co
Andreés et al. (2006)(1%® Correction of the haematological abnormalities was Peripheral blood Human
achieved in at least two-thirds of the patients, equally
well in patients treated with either intramuscular or
oral crystalline cyanocobalamin
Duckham & Lee (1976)'1® Therapy with enteric coated cobalt chloride has a Peripheral blood Human
definite place in the treatment of the refractory
anaemia of chronic renal failure
Thorling & Erslev (1972)(1%9 Increase in the 24 h Fe utilisation of hyper-transfused Peripheral blood Mouse
rats
Berk et al. (1949)""" Co can cause increase of erythropoiesis Peripheral blood Human
lodine
Flores-Morales et al. (2002)(''® Direct and indirect gene regulation by TR in liver is Liver Mouse
complex and involves both ligand-dependent and
-independent actions by the major TR isoforms
Hara et al. (2000)('29) Cooperative action of T3 with an RXR-specific ligandis ~ Promyeloleukaemic HL-60 Human
different from that with an RAR ligand in cellular cells
apoptotic regulation
Lin et al. (1999)('2 T,-directed STAT1a Ser-727 phosphorylation is MAPK Hela and CV-1 cells Human

Human and murine

Mouse

Mouse

Human
Human

Human

Human

Human

Human
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Table 1 Continued

Reference Main findings Cell or tissue Species
Se
Kaushal et al. (2011)(144 Se nutrition regulates erythrocyte homeostasis and
influences differentiation of erythroid progenitors
Costa et al. (2014)149 Erythrocyte Se concentration is a predictor of hospital Blood
mortality in patients with septic shock
Gandhi et al. (2014)(14® Se-dependent modulation influences apoptosis of Spleen, blood and BRC-
cancer stem-like cells ABL + cell line
Li
Gallicchio & Chen (1980)(16® Li may modulate granulopoiesis by increasing the CFU Pluripotential stem cells Mouse
stem cell compartment, thereby increasing the
committed progenitor stem cell (CFUc) population
Gallicchio et al. (1995)16" Li restricts the development of haematopoietic Peripheral blood progenitors Mouse
suppression that develops in this retroviral animal
model of immunodeficiency
Gallicchio & Murphy Jr (1983)©% In vitro erythropoiesis reduced in the presence of Li* Bone marrow Murine
Walasek et al. (2012)(162) Combination of valproic acid and Li potently delays Haematopoietic/progenitor Mouse

differentiation at the biological and molecular levels

stem cells

of expression of stem cell-related genes and
repressed genes involved in differentiation

ROS, reactive oxygen species; SOD, superoxide dismutase; MEK, MAPK/ERK kinase; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; TR,
thyroid hormone receptor; Tj, triiodothyronine; RXR, retinoid X receptor; RAR, retinoic acid receptor; Ty, tetraiodothyronine; STAT, signal transducer and activator of transcription;

CFU, colony-forming unit.

the existence of Fe in the liver'”. From the mid-1920s, scientists
were engaged in developing a method of measuring the Fe
content of different tissues: blood®, plasma® and organs™;
addition, the determination of the Fe content of food was also in
progress'®!V_ These decades of studies gave rise to the stan-
dards of reference values for Fe and many other inorganic
compounds, as well as cellular blood parameters, which are
used nowadays in clinical laboratories worldwide"*'*. On this
basis, the deficiency parameter of Fe characterised by the
reduction of total corporeal Fe and the exhaustion of tissue-
level stores can be addressed®. Fe deficiency leads to the
best-known common micronutrient-derived blood disorder: Fe-
deficiency anaemia, which affects nearly two billion individuals,
of whom children as well as pregnant women and women of
child-bearing age are the most affected populations>1>.

Fe is provided by food, and its absorption occurs in the
superior jejunum and duodenum via the enterocytes, which can
retain Fe bound to ferritin protein in the cytoplasm or deliver it
to the plasma for distribution to different tissues in the body in a
process mediated by the ferroportin transporter’®. Macro-
phages also act as a reservoir of Fe but do so differently from
the duodenal mucosal cells: they store Fe from phagocytised
senescent erythrocytes?’'®. The placenta is also an important
organ for Fe storage during fetal life, when Fe is retained by
transferrin receptor 1 (TfR1) present on the apical membrane of
syncytiotrophoblasts (and in many other cell types), inter-
nalised, and then dissociated and released into the cytoplasm,
becoming available for transfer to the fetal circulation™. Lastly,
the hepatocytes represent the major storage site for Fe, dis-
playing high uptake rates for the non-transferrin-bound Fe
present when the Fe exceeds the Fe total binding capacity of
transferrin®*2" (Fig. D.

Erythropoietic tissue is the major user of Fe, as Fe is essential
for haeme as well as Hb synthesis by the reticulocytes (maturing

in
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Fig. 1. Iron absorption and metabolism. Most of the iron content is
incorporated in erythrocyte Hb, and the hepatocytes represent the main site
for iron storage.

erythroblasts); the haeme Fe content of erythrocytes is
approximately 1 mg Fe per ml of erythrocytes’”. The reticulo-
cyte Hb content provides an indirect measure of the functional
Fe available for new erythrocyte production, and its measure-
ment in peripheral blood is useful for the diagnosis of Fe
deficiency in both adults and children®®. An imbalance
between Hb synthesis and erythroid proliferation results in the
production of hypochromic microcytic cells®”. On the other
hand, a lack of the haeme exporter feline leukaemia virus,
subgroup C, receptor 1 (FLVCR1D) leads to severe macrocytic
anaemia®®”, which is mechanistically determined by the up-
regulation of the TfR1%*>.

Fe is also important for the proliferation and differentiation of
haematopoietic cells. Upon Fe deprivation, HL-60 (human
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leukaemia cell line) promonocytes bypass differentiation into
macrophages/monocytes and increase apoptosis by a process
involving greater than 50 % inhibition of the cyclins A, D3 and
El, cdk2, c-myc, Rb, p21 (WAF1/Cipl), bad, egr-1, FasL and
iNOS genes®”. In AML3 promyelocytic leukaemia cells, Fe-
chelating therapy induces differentiation in a manner involving
modulation of reactive oxygen species and the mitogen-
activated protein kinase (MAPK) pathway activation; a similar
effect was obtained in an AML patient refractory to che-
motherapy, by using Fe-chelating agents and vitamin Ds,
resulting in blast differentiation and reversal of pancytope-
nia®”. Osteoclast development and Fe homeostasis are also
correlated and Fe can act in the proliferation of osteoclast
progenitor cells. This involves increasing the levels of tran-
scripts encoding TfR1 and divalent metal transporter 1 and
decreasing the levels of transcripts encoding ferroportin®®.

A correlation between Fe and lymphocyte proliferation is
widely reported in the literature® =", Intra- and extra-cellular
Fe differentially support the proliferation of lymphocytes,
dependent on TfR1 mRNA expression rather than on extra-
cellular Fe availability®®
important component of immune cell function, being involved
in binding to T cells, suppression of the delayed-type hyper-
sensitivity to induce allergy, suppression of the production of
antibodies by B cells, reduction of the phagocytosis of granu-
locytes, and regulation of granulomonocytopoiesis. Cytokines
(especially TNF-a and IL-1o) induce ferritin gene expression,
which in turns requires Fe®®, evidencing the relationship of Fe
deficiency with the triggering of several defects in both the
humoral and cellular immune response®®. However, the pro-
proliferative effects of Fe on lymphocytes may be analysed and
explored distinctly according to the status of the immune sys-
tem (for example, homeostasis v. disease/inflammation), taking
into consideration, beyond other factors, the poor ability of
lymphocytes to sequester excess Fe in ferritin in Fe-overloaded
patients(SS).

Much has been described in terms of Fe overload in patients
who have received bone marrow transplantation(%—@)‘ Fe
overload results from multiple erythrocyte transfusions due to the
lack of an efficient Fe export system™?. Fe overload may con-
tribute to post-transplant liver toxicity, veno-occlusive disease,
infection susceptibility, and graft . host disease and negatively
affect cell survival. In this sense, Fe chelators may represent an
alternative option for patients with an inadequate haematological
recovery™®?. It has been shown that Fe overload affects HSC,
decreasing both the erythroid and granulocytic colony-forming
units (CFU) and the femoral absolute number of HSC LSK* cells,
in addition to a diminished long-term and multilineage engraft-
ment capability after transplantation in a process involving the
enhancement of oxidative stress, mainly in the HSC LSK* cells,
erythroid cells and granulocytic cells®. Corroborating this
finding, several reports are available in the literature evidencing
the detrimental effects of oxidative stress on HSC and the com-
ponents involved in haematopoiesis®>444%.

Nitrosative stress is also implicated in this effect. Absence of
the antioxidant enzyme haeme oxygenase-1 (HO-1), which
catalyses stereospecific degradation of haeme to biliverdin, with
release of ferrous Fe and carbon monoxide, disrupts HSC

. In addition to TfR1, ferritin is an
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maintenance, reducing its reconstitution capacity(%) . However,
although oxidative stress triggered by Fe overload results in
damage to the normal haematopoietic cells/environment, it can
have positive effects on tumoral HSC and progenitor cells of the
same origin; this may not be restricted to HSC, as modulation of
the haematopoietic system at the level of Fe metabolism also
occurs in mature cell populations. The challenge is to achieve
an ideal outcome by using Fe chelators or otherwise inducing
Fe overload, improving the haematopoietic system and/or
haematological disorders without disturbing the homeostasis of
the whole organism(38’44’46) .

Manganese

Mn is a mineral with both nutritional relevance and potential
toxicity; this ambiguous feature has prompted studies for dec-
ades attempting to understand the effects of Mn deficiency and
Mn toxicity®”. Mn functions as a cofactor of multiple enzymes,
playing a role in many physiological processes*®
required cofactor for arginase, superoxide dismutase (Mn-
dependent superoxide dismutase (MnSOD); also called SOD2) is
critical to preventing cellular oxidative stress), as well as pyr-
uvate carboxylase™>®. Although its toxicity in many different
tissues and organs has been described®"
in the literature concerning damage to the haematopoietic
system from direct sources, for example, occupational over-
exposure, dietary supplementation, or intracorporeal adminis-
tration. However, an indirect effect of Mn through MnSOD has
been reported, as the MnSOD enzyme is dependent on Mn
availability®?.

In myeloid leukaemic cells from the HL-60 and K562 linea-
ges, MnSOD provides a protective effect against the cytotoxicity
driven by TNF stimuli®. MnSOD (SOD2) knockout mice show
hypocellular bone marrow associate with a severe anaemia®®.
Loss of SOD2 in erythroid progenitor cells leads to increased
oxidative damage, change in the membrane deformation
capacity and induction of reticulocytosis®”. The same study
showed that SOD2 reduction affects the bone marrow stem
cells” ability to reconstitute haematopoiesis in an irradiated
recipient mouse and the long-term cell survival of the animal.
More recently, Case et al.®® showed that the loss of SOD2 in
HSC causes defects in erythrocyte maturation leading to a
compensatory extramedullary haematopoiesis involving dis-
rupted Fe homeostasis and increased mitochondrial oxidative
stress, which in turns lead to global epigenetic dysregulation,
suggesting a link between mitochondrial redox and epigenetic
control of nuclear gene regulation.

. Mn is a

, there is no evidence

Calcium

Since 1883 when studies in London with frogs demonstrated
that cardiac contraction was dependent on Ca®”
works have shown the importance of this ion for/in cellular
functions. It is fully established that Ca controls various cellular
functions, due to the great versatility of responses to this ion.
Several proteins are modulated directly or indirectly by the
action of Ca, such as kinases, phosphatases and transcription
factors®®. Ca acts as a second messenger because of its high

, many later
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Impairment of haematopoietic
cell survival

@&

Ca
deficiency

*

&

Affects signalling of haematopoietic
processes, such as proliferation
and differentiation.

Erythropoiesis reduction

Fig. 2. Main effects of calcium deficiency on the haematopoietic system.

concentration in the extracellular medium and organelles and
low concentration in the intracellular environment. Responses
may be short-lived like cytokine secretion and muscle motility
or contraction but may also be long-lasting like gene tran-
scription, division and cell death®®. The signs of intracellular
Ca are always oscillating. Cells utilise various mechanisms to
control cytoplasmic Ca levels©.

Ca is a signalling ion that regulates various systems, such as
haematopoiesis. Even though the participation of Ca in hae-
matopoiesis is still not fully understood, it is known that intra-
cellular Ca acts on the signalling of several processes, such as
proliferation, differentiation and cell death®V (Fig. 2). Cytokine
receptors, such as stem cell factor (SCF), erythropoietin (EPO),
IL-3, granulocyte macrophage colony-stimulating factor (GM-
CSF) and granulocyte colony-stimulating factor (G-CSF) can
also be activated by Ca signalling. The binding of GM-CSF and
IL-3 to their receptors promotes the dimerisation of these
cytokine receptors and elicits the Janus kinase/signal transducer
and activator of transcription (JAK/STAT) as well as RAS/RAF/
ERK pathways«’l)A

Intracellular Ca can also be released by the activation of
phospholipase C (PLC) y2 through cytokines or PLCf by ATP
and analogues, producing inositol 1,4,5-trisphosphate (IP3) and
diacylglycerol (DAG). These second messengers (IP; and DAG)
act synergistically to cause the phosphorylation of proteins
necessary for the processes of proliferation and differentiation
of haematopoietic cells. In addition, DAG appears to act by
increasing the affinity of protein kinase C for Ca and Ca**/
calmodulin-dependent protein kinase I (CaMKID), proteins
involved with the proliferation and differentiation of primitive
haematopoietic cells®®. The Ca-sensing receptor (CaSR) is
critical for retaining HSC near the endosteal region, possibly
mediating the association of HSC with collagen type I. It was
also observed that HSC detect relatively high levels of Ca (up to
40 mmol/D) through CaSR®?. Upon detecting changes in Ca
concentrations, cells promote the release of Ca from the stocks
in the endoplasmic reticulum and mitochondria through spe-
cific channels to the cytosol or extracellular medium, in order to
maintain cellular homeostasis®?.

Studies in zebrafish have shown that cytokinesis requires
intracellular Ca signalling and signal transduction via the cal-
modulin pathway (CaM)®. In addition, erythropoiesis requires
Ca signalling for nuclear extrusion. The uptake of extracellular
Ca is fundamental for the enucleation in the orthochromatic

erythroblasts®”. The maturation of erythrocytes is highly

org/10.1017/50954422418000112 Published online by Cambridge University Press

impaired with intracellular Ca deficiency. This evidence leads
us to believe that a lack of Ca can lead to nutrient-deficiency
©6), Although calcimimetic drugs imitate the action of
Ca on the tissues by allosteric activation of the Ca receptor, no
direct or indirect beneficial effects of these drugs on anaemia
due to chronic disease have been observed®”.

Barbosa et al®® also demonstrated the role of the Ca sig-
nalling pathway without myeloid involvement, relating an
action of protein kinase C and PLCy2 with M-CSF and G-CSF-
mediated differentiation activated by cytokines. In addition,
PLCP2 is activated by ATP. Both PLCy and PLCP induce release
of intracellular Ca via IP; formation. Increased intracellular Ca
induced by G-protein (P2Y)-coupled receptors and ATP-
activated ion channels (P2X) is also related to myeloid differ-
entiation®”. ATP induces differentiation of HSC in the myeloid
lineage, and this effect is modulated by cytokines such as SCF,
IL-3 and GM-CSF7”.

Understanding the role of Ca in haematopoiesis is funda-
mental to perceiving the mechanisms of cell proliferation and
differentiation as well as changes resulting from deficiencies in
this process. Mechanisms of the haematopoietic system are
complex, and Ca-dependent mechanisms are still under
investigation.

anaemia

Magnesium

Since 1975, Mg has been considered a key factor in the so-
called ‘coordinated growth and metabolism response’, i.e. the
up-regulation of energy metabolism and the synthesis of pro-
teins and DNA that precedes cell division””. The large amount
of Mg in the intracellular medium reflects its involvement with
phospholipids, proteins, nucleic acids and a wide range of
biological functions and enzymic reactions”*”>, Mg is impor-
tant for cell cycle regulation, particularly at the beginning of
DNA synthesis and mitosis, in both micro-organisms and
mammals. In addition, it has been reported that cell transfor-
mation can cause selective loss of this regulatory function for
Mg, implying that Mg is important in oncogenesis(74) . Mg con-
centration has a significant positive correlation with the protein
synthesis rate, suggesting a key role of Mg in the regulation of
protein synthesis and in the cell proliferation rate in normal
tissue cell populations”> .

Studies with interferon-o and ATP stimuli demonstrate a
correlation with Ca metabolism, promoting signalling that acti-
vates phospholipase A (PLA) by inducing arachidonic acid
release from the cell membrane. The prostaglandins produced
by arachidonic acid through cyclo-oxygenase stimulate adenyl
cyclase, which synthesises cAMP. Intracellular Mg may influ-
ence adenyl cyclase, down-regulating the same efflux of Mg.
Modulation of cellular Mg homeostasis parallels the molecular
control of cell proliferation, differentiation and death”®.

The physiological process of haematopoiesis has a char-
acteristic high turnover, so it is expected that the demand for Mg
is high. Mg deficiency may promote defects in platelet bio-
genesis due to changes in the cytoskeleton, promoting changes
in platelet function. In addition, changes in the transient
receptor potential melastatin 7 ion channels (TRPM7) may
cause macrothrombocytopenia in human subjects and in
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Defects in platelet biogenesis Decreases erythrocyte numbers
Changes in platelet function Reduces erythrocyte survival
Erythrocyte membrane defects
Anaemia

Fig. 3. Main effects of magnesium deficiency on the haematopoietic system.

mice'””. Rats fed with a diet deficient in Mg show decreased
erythrocyte numbers in addition to reduced erythrocyte survival
and erythrocyte membrane defects and become anaemic'”®
(Fig. 3). Mg and K administration promotes accelerated
restoration of spleen erythropoiesis in irradiated rats””. How-
ever, the pathological processes that cause these changes are
unknown. Few studies have correlated Mg with haematopoi-
esis. Research showing this relationship should be encouraged
to better understand the mechanisms involved in the regulation
of important cellular functions, such as cell proliferation and
differentiation.

Sodium and potassium

Homeostatic regulation is critical for all cellular functions, pri-
marily for cell viability. The electrochemical Na and K gradient
is crucial for ionic homeostasis and is regulated by the trans-
membrane protein Na*K*™-ATPase®* Erythrocyte maturation
is linked to changes in cell volume, regulated by pump Na*K*-
ATPase and K'Cl™ co-transport. The enhanced activity of
the Na/K pump is observed in reticulocytes and decreases
during cell maturation®®®®_ Reticulocytes are characterised by
higher cellular volume due to enhanced K turnover, which is
increased approximately 3-fold compared with that of mature
cells 59, During maturation and ageing, the loss of cellular K*
by K*Cl™ cotransport decreases reticulocyte and erythrocyte
volume®”. One of the reasons for increased Na/K pump
activity might be a functional demand to keep pace with aug-
mented Na leak®®.

K is important for erythroid colony formation and main-
tenance of self-renewal of erythroid stem cells and their dif-
ferentiation in vitro®°?. In Friend erythroleukaemia cells, a
widely used model of murine erythropoiesis, exposure to high
K and low Na levels is capable of completing erythroid differ-
entiation, suggesting that cell maturation involves a selective
change in K permeability””. K inward rectifier channels are
essential for the development of CD34*/CD38™ primitive hae-
matopoietic cells”*®. Because these channels are not detected
in most mature haematopoietic cells, their transient expression
in primitive cells suggests that their role is in the early stages of
HSC differentiation”*>. The differentiation of some leukaemic
myeloid lineage cells is also correlated with K channels. Pro-
myelocytic HL-60 cells present a slow-inactivated K channel®®,
and promonocytic U-937 cells exhibit abnormal conductance in
K channels®”. On the other hand, in myeloid ML-1 cells, K
current is suppressed during cell differentiation®®. Few studies
have correlated Na and K with haematopoietic differentiation.
Understanding the signals involved in this regulation can lead
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us to elucidate molecular mechanisms and develop novel
strategies to control haematological disorders.

Cobalt

Co is a metal with chemical properties similar to Fe and Ni®”,

Metal ions perform a wide role in natural proteins, including
nucleophilic catalysis, electron transfer as well as the stabilisation
of protein structure®'?, Co is a fundamental component in the
tetrapyrrole ring of hydroxocobalamin (vitamin B,,), which is an
essential coenzyme of cell mitosis, acting on the synthesis of
methionine and metabolism of folates and purines 1% Under
conditions of hydroxocobalamin deficiency, haematopoiesis is
widely affected and erythropoiesis turns ineffective because
erythrocytic progenitors cannot mature adequately. This has
implications for the development of megaloblastic anaemia and
hypofunction of erythrocytic cells"'*>!%”, However, Co does not
only participate in haematopoiesis via hydroxocobalamin but
also acts in inorganic forms (Co**), usually CoCl, or CoSOy. In
1929, Waltner & Waltner™®” showed that Co stimulates ery-
thropoiesis and induces polycythaemia in animal models.
Weissbecker™® related increases in reticulocytes, erythrocytes,
and Hb, as well as bone marrow erythroid hyperplasia, in oral
administration of Co salts. In addition, Co induces EPO and
blocks iodine uptake by the thyroid %

Co is considered one of the most reliable and potent stimu-
lators of erythrocyte production®”. Co enhances erythropoi-
esis by indirect activation of EPO gene expression. Co binds to
hypoxia-inducible transcription factors (HIF), and this associa-
tion inhibits the proteasomal degradation of HIF by von Hip-
pel-Lindau (pVHL) proteins.
promotes the dimerisation of HIF-2a and HIF-1f subunits in the
nucleus and powerfully activates EPO expression?.

Co has been used extensively since the late 1970s in the
treatment of several types of anaemia in children and adults, as
well as in anaemia of chronic renal disease™'''?. However,
soluble Co salts are toxic to the human body, and because of the
side effects associated with chronic Co use, Co is rarely used
nowadays, since the administration of Co is shown to induce DNA
damage and promote the development of carcinomas'>1,

The accumulation of HIF

lodine

Iodine is a vital micronutrient required at all stages of life,
promoting general growth and development within the body as
well as aiding in metabolism. In addition, iodine is an essential
thyroid thyroxine hormones (tetra-
iodothyronine (T,) and triiodothyronine (T 3))(116)‘ Todine acts
indirectly on haematopoiesis, through thyroid hormones and
prohormones, which are the only known iodine-containing
compounds with biological activity. The thyroid gland produces
T4 and T3, which are largely known to control metabolism, with
emphasis on renal and cardiac function. Furthermore, thyroid
hormones handle carbohydrate and fat metabolism, protein
synthesis and fetal neurodevelopment™”!*®,

At the cellular level, thyroid hormones undergo several meta-
bolic reactions by different cytosolic enzymes and play a role in a
variety of cellular pathways and functions, comprising insulin

constituent of the
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lodine \ “
|

Tgand T,
production

' Erythropoietin
production

TRo1/TRo2
' Erythroblast proliferation
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v

Fig. 4. lodine is an essential constituent of the thyroid thyroxine hormones.
Thyroid hormones classically stimulate erythropoiesis by increasing the oxygen
demand on the kidneys and stimulating erythropoietin production. T,
triiodothyronine; T, tetraiodothyronine; TR, thyroid hormone receptor.

signalling, apoptosis, the cell cycle and proliferation®*'%%,

Kocher™®? first described the haematological findings of thyroid
abnormalities, which showed that hyperthyroidism patients pre-
sented leucopenia, relative lymphocytosis and neutropenia. Since
then, several studies have correlated thyroid diseases and hae-
matopoiesis, but this relationship is complex and some studies are
inconclusive or present important limitations.

Thyroid hormones classically stimulate erythropoiesis by
increasing the oxygen demand on the kidneys and stimulating
EPO production™®* (Fig. 4). That is why normocytic normo-
chromic anaemia is associated with hypothyroidism, and
hyperthyroidism frequently coincides with erythrocytosis and
erythroid hyperplasia on bone marrow'#>12_ 1t was unclear if
thyroid hormones acted exclusively by way of EPO or could
also act on haematopoietic progenitor cells until Golde
et al."*” demonstrated that Ts and Ty directly stimulate mice
erythroid colony formation in vitro. Thereafter, the expression
and activity of thyroid hormone receptors (TR) were reported in
mature bone marrow cells in both rats and mice*#*'2%,

In humans, TRal and TRa2 are important for fate determina-
tion in haematopoietic progenitors. TRal and TRa2 receptors are
expressed on CD34" haematopoietic cells and regulate apoptosis
and cell growth™*!*Y n erythroblasts, the activation of these
receptors induces proliferation and accelerates cell differentia-
tion® (Fig. 4). The mechanisms by which thyroid hormones
regulate haematopoiesis iz vivo are not fully understood. Novel
insights into the interactions between T3 and T4 and the classical
haematopoietic inductors are required, so we can develop ways
of intervening in both haematological and thyroid disorders.

Phosphorus

P plays a major role in physiological functions, including energy
production, cellular replication and bone mineral metabolism®??,
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It is well established that rapid cell synthesis and turnover may
be associated with high phosphate consumption. Low levels of
phosphate leading to hypophosphataemia are associated after
bone marrow transplantation**3%_ Although different research
groups affirm the correlation between hypophosphataemia in
bone marrow or stem cell transplantation, there are few data
available in the literature offering a concise explanation of how
the decreased level of phosphates can affect haematopoiesis.

Raanani et al. " emphasised that the release of cytokines,
such as IL-6 and IL-8, is commonly associated with the devel-
opment of hypophosphataemia observed in HSC transplant. The
explanation for the hypophosphataemia observed was that it was
due to phosphate consumption by proliferating cells after bone
marrow HSC transplantation in human subjects™**™3”, Increased
P levels can be harmful to the haematopoietic process. Recent
studies state that higher P serum levels increase the likelihood of
anaemia. EPO deficiency, inflammation and oxidative stress have
been implicated as potential factors associating hyperpho-
sphataemia and anaemia. The possible mechanisms linking
hyperphosphataemia and anaemia were described in 2011 by
Kovesdy et al. **®, who suggested that high serum P may lead to
a higher production of polyamines, which can function as
uraemic toxins inhibiting erythropoiesis1*%13%,

Another possible mechanism is that high serum P leads to
vascular calcification within renal arteries, which may eventually
result in EPO deficiency and anaemia®?>1?_ All these results
highlight that increased levels of P can modulate haematopoietic
functions. However, there is a lack of data in the literature
clearly explaining how hyperphosphataemia affects the pro-
duction of erythrocytes. Low dietary intake, decreased absorp-
tion or increased urinary phosphate excretion and shifts of
phosphate from the extracellular into the intracellular fluid are
conditions known to induce moderate hypophosphataemia™>%.

Selenium

Se is a chemical element and can be determined in blood,
plasma or serum, and by assaying the activity of the seleno-
protein glutathione peroxidase (GPx) in whole blood or plate-
lets 41142 Se is a trace element that exerts crucial effects on
erythropoiesis. The cells that exhibit higher Se consumption are
those of the haematopoietic system, such as immune cells,
erythrocytes and plateletsﬂﬁ) Se is an important component of
GPx, which assists in intracellular defence mechanisms against
oxidative damage by preventing the production of reactive
oxygen species. It is known that Se is not restricted to its anti-
oxidant function but is also involved in multiple other aspects of
human metabolism 4443,

Haematopoiesis is characterised by tight control of cell
expansion, with differentiation and maintenance of progenitors.
These processes expose the cells to oxidative stress, and this
could possibly affect erythropoiesis because Hb is prone to
oxidative damage™ . Se functions as an antioxidant through
selenoproteins, preventing erythrocyte lysis. Alterations in the
physiological levels of Se are usually linked with numerous
pathological conditions, associated with oxidative stress 41142149,
Se deficiency is associated with increased denaturation of Hb as
well as increased methaemoglobin content, protein carbonyls,
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lipid peroxidation, Heinz bodies and increased erythrocyte
osmotic fragility™ 4%,

Forkhead transcription factor (FoxO3a) is one of the most
expressed protein in erythroid cells and is essential for the
maintenance of the HSC pool. Se status is important in ery-
throcyte homeostasis by modulating FoxO3a localisation, which
is pivotal for mitigating oxidative stress in erythroid cells"**.
Erythrocyte Se concentration is correlated with hospital mor-
tality in septic shock patients. In addition, erythrocyte Se con-
centrations can be a predictor of mortality in patients with septic
ShOCk(143‘l4§).

Gandhi et al.**® demonstrated that Se-dependent modula-
tion of arachidonic acid metabolism can trigger apoptosis of
primary leukaemic cells. The pro-apoptotic effects of Se were,
in part, related to exacerbated oxidative stress in leukaemia
stem cells that involved NADPH oxidases, particularly Nox1. In
contrast, Se treatment did not affect normal HSC, suggesting that
leukaemic cells are uniquely sensitive to changes in intracellular
reactive oxygen species(l%) .

Although environmental toxicity of Se in humans is rare,
clinical signs such as hypochromic anaemia, leukopoenia,
damaged nails, and others have been found in long-term
workers who manufacture Se (LI21D - Many
researchers have shown that Se supplementation provides
positive effects on the general cellular condition. Se plays cru-
cial roles in the physiology of blood formation and pathologies

such as cancer; however, the mechanism of action has yet to be
43)
d,

rectifiers

unveile

Copper

Cu is an important mineral in body metabolism, largely because it
allows many critical enzymes, such as cytochrome C oxidase,
superoxide dismutase, tyrosinase, peptidylglycine a-amidating
mono-oxygenase, and lysyl oxidase, to function properly(l48’149) .
Cu is essential for normal haematopoiesis, and common features
of Cu deficiency include anaemia, leucopenia and neu-
tropenia®® (Fig. 5). The involvement of Cu in haematopoiesis is
also inferred from inherited or acquired Cu deficiency due to
genetic mutations or malnourishment, respectively, which causes
neutropenia, anaemia and thrombocytopenia due to arrested
differentiation at the haematopoietic progenitor cell level
However, nutritional Cu deficiency is extremely rare and occurs
in newborns, usually premature, undergoing rapid growth on a
diet poor in Cu or in patients receiving parenteral nutrition for
long periods of time without Cu supplementation. Although it is
rare, Cu deficiency causes hypochromic anaemia unresponsive
to Fe supplementation'>®. Cu is essential for normal

Cu
deficiency
Leucopenia

and neutropenia

Fig. 5. Main effects of copper deficiency on the haematopoietic system.
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haematopoiesis; however, the effects of fine-tuning of intracel-
lular Cu content on the regulation of self-renewal and differ-
entiation of HSC and progenitor cells are unknown>>1%,

Studies with HSC and haematopoietic progenitor cells cultured
with the Cu chelator tetraethylenepentamine (TEPA) have sug-
gested that reducing the cellular Cu content with TEPA results in
preferential expansion of HSC activity in contrast to arrested
differentiation, directly affecting blood cell populations**”. In
addition, several mechanisms have been proposed for the role of
Cu in Fe metabolism and erythropoiesis. Cu is required for the
formation of erythrocytes, as Cu deficiency results in anaemia,
possibly due to chronic ingestion of high amounts of Zn, which
impairs Cu absorption>®. The literature also shows that serum
Cu concentrations have an important relationship with blood
leucocyte counts and serum Fe parameters. Studies have shown
that the addition of Cu increases retinoic acid-induced differ-
entiation of the HL-60 cell line"**>.

Lithium

Li is a mineral that can modulate the haematopoietic process
directly™>. Studies have shown that ingestion of Li increases
the production of neutrophil granulocytes, showing that nano-
molar levels of Li can stimulate clonal proliferation of granulo-
cyte precursors ¥ The effects of Li on haematopoiesis are
not cell-lineage specific. In vitro studies have shown that Li
enhances colony formation (CFU) of the erythrocyte precursor
(CFU-E), the megakaryocyte precursor (CFU-Meg) and the
granulocyte macrophage precursor (GM-CFU)*>71®  patients
treated with Li for manic—depressive illnesses usually develop
leucocytosis with increases in peripherical neutrophils and
eosinophils and, commonly, monocytes and platelets also tend
to be increased; however, lymphocytes and erythrocytes are
usually unaffected>16%.

In addition, a CFU assay performed with bone marrow cells
has shown a higher capacity for the formation of CFUZ®”,
Additionally, mice infected with LP-BM5 murine leukaemia
virus (MuLV) and treated with Li showed increased neutrophils
and eosinophils in the peripheral blood; moreover, haemato-
poietic progenitor cells collected from the bone marrow and
spleens of these animals showed increased GM-CFU forma-
1D However, high doses of lithium carbonate (greater
than 5 mm) can have opposite effects leading to a reduction of
the granulocytes in peripheral blood and lower formation of
CFU160.162)

tion

Zinc

Zn is required in the structure and activity of more than 300
enzymes including DNA polymerase, Cu-Zn superoxide dis-
mutase, alkaline phosphatase, alcohol dehydrogenase, carbonic
anhydrase and protein chain elongation factor"®. This mineral
is used in nucleic acid and protein synthesis, cell differentiation
and replication, non-glucose metabolism and insulin secretion.
The Zn requirement of numerous proteins makes it is essential
for growth, tissue maintenance and wound healing. Proper Zn
intake is critical for the integration of many tissues and systems,
such as gastrointestinal, muscular, immune, reproductive and
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behavioural, as well as involved in the wound-healing
process 1647160,

Zn can act as a signal to induce erythropoiesis in a dose-
dependent manner*®”. In addition, serum Zn levels have a
negative effect on anaemia by blocking the utilisation of Fe of
anaemic patients**®. It should be noted that chronic Zn infu-
sion can induce Cu deficiency and sideroblastic anaemia,
decreased plasma caeruloplasmin and microcytic anaemia*®”,

On the other hand, Zn deficiency occurs in a wide range of
pathologies, including haemolytic anaemias such as thalasse-
mias and sickle cell anaemia. Zn deficiency exerts its most
profound effects on rapidly proliferating tissues. Severe defi-
ciency is usually accompanied by growth arrest, teratogenicity,
hypogonadism and infertility, and commonly but not exclu-
sively with impairment of cellular immunity(l@)
depletion usually occurs in cells of the erythroid and lymphoid
lineages, and evaluating the phenotypic distribution of cells of
the B-lineage it has been shown that Zn deficiency alters the
composition as well as the phenotypic distribution of the
remaining cells of the B-lineage. Zn deficiency also reduces
immature or IgM-bearing B-cells, whereas the earliest B-cell

. Substantial

progenitors are somewhat resistant to the deficiency. In addi-
tion, the ratio CD4/CD8 in the thymus is affected’*'7V,
However, myelopoiesis is not disrupted in Zn deficiency, as
shown by the expansion of all myeloid populations in the bone
marrow of Zn-deficient patients"'”"'7?. Zn deficiency has been
reported in patients undergoing intensive therapy with desfer-
rioxamine, an Fe chelator that aims to reduce or stabilise non-
body Fe accumulation, and in patients with decreased renal
reabsorption of trace minerals.

Conclusion

Minerals are mandatory for the development of effective hae-
matopoiesis, and the absence of these elements can have a
deep impact on blood cell formation and/or blood cell func-
tions. In contrast, mineral excess can also be harmful, although
the majority of the complete mechanisms that can be disrupted
by an excess of minerals are poorly understood. It is crucial to
assess whether minerals can interfere to correct haematopoietic
functions, providing better therapeutic care in several nutri-
tional and haematopoietic diseases. More research is required
to provide data unveiling the roles of minerals in diverse
aspects of haematopoiesis.
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