Skip to main content Accessibility help
×
Home

Biotin homeostasis during the cell cycle

  • Janos Zempleni (a1) and Donald M Mock (a2)

Abstract

Peripheral blood mononuclear cells (PBMC) accumulate biotin by a Na-dependent energy-requiring transporter. This transporter might be the so-called Na-dependent multivitamin transporter, but kinetic observations suggest the existence of a second, more specific, biotin transporter. PBMC respond to proliferation by increased uptake of biotin; the increase is probably mediated by an increased number of transporters on the cell surface. The inferred increase in the biotin transporter synthesis is relatively specific. The increased uptake of biotin into proliferating PBMC is consistent with the hypothesis that these cells have an increased demand for biotin. Indeed, proliferating PBMC increase expression of genes encoding β-methylcrotonyl-CoA carboxylase and propionyl-CoA carboxylase, generating a quantitatively significant increased demand for biotin as a coenzyme in newly-synthesized carboxylases. Moreover, expression of the holocarboxylase synthetase gene increases, consistent with the synthesis of new holocarboxylases. In addition, proliferating PBMC increase both the density of biotinylation of histones and the mass of biotinylated histones per cell, suggesting a potential role for biotin in transcription and replication of DNA.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Biotin homeostasis during the cell cycle
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Biotin homeostasis during the cell cycle
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Biotin homeostasis during the cell cycle
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Donald M. Mock, fax +1 501 603 1146, email mockdonaldm@exchange.uams.edu

References

Hide All
Ausio, J & van Holde, KE (1986) Histone hyperacetylation: its effect on nucleosome conformation and stability. Biochemistry 25, 14211428.
Borboni, P, Magnaterra, R, Rabini, RA, Staffolani, R, Porzio, O, Sesti, G, Fusco, A, Mazzanti, L, Lauro, R & Marlier, LNJL (1996) Effect of biotin on glucokinase activity, mRNA expression and insulin release in cultured beta-cells. Acta Diabetologica 33, 154158.
Boulikas, T (1988) At least 60 ADP-ribosylated variant histones are present in nuclei from dimethylsulfate-treated and untreated cells. EMBO Journal 7, 5767.
Boulikas, T, Bastin, B, Boulikas, P & Dupuis, G (1990) Increase in histone poly(ADP-ribosylation) in mitogen-activated lymphoid cells. Experimental Cell Research 187, 7784.
Bowers-Komro, DM & McCormick, DB (1985) Biotin uptake by isolated rat liver hepatocytes. In Biotin, vol. 447, pp. 350358 [Dakshinamurti, K and Bhagavan, HN editors]. New York: New York Academy of Sciences.
Chauhan, J & Dakshinamurti, K (1991) Transcriptional regulation of the glucokinase gene by biotin in starved rats. Journal of Biological Chemistry 266, 1003510038.
Collins, JC, Paietta, E, Green, R, Morell, AG & Stockert, RJ (1988) Biotin-dependent expression of the asialoglycoprotein receptor in HepG2. Journal of Biological Chemistry 263, 1128011283.
Cowan, MJ, Wara, DW, Packman, S, Yoshino, M, Sweetman, L & Nyhan, W (1979) Multiple biotin-dependent carboxylase deficiencies associated with defects in T-cell and B-cell immunity. Lancet 2, 115118.
Dakshinamurti, K, Chalifour, LE & Bhullar, RJ (1985) Requirement for biotin and the function of biotin in cells in culture. In Biotin, vol. 447, pp. 3855 [Dakshinamurti, K and Bhagavan, HN editors]. New York: New York Academy of Sciences.
Dakshinamurti, K & Chauhan, J (1994) Biotin-binding proteins. In Vitamin Receptors: Vitamins as Ligands in Cell Communication, pp. 200249 [Dakshinamurti, K editor]. Cambridge: Cambridge University Press.
Dakshinamurti, K & Cheah-Tan, C (1968) Liver glucokinase of the biotin deficient rat. Canadian Journal of Biochemistry 46, 7580.
Dakshinamurti, K & Litvak, S (1970) Biotin and protein synthesis in rat liver. Journal of Biological Chemistry 245, 56005605.
Freytag, SO & Merton, FU (1983) Regulation of the synthesis and degradation of pyruvate carboxylase in 3T3-L1 cells. Journal of Biological Chemistry 258, 63076312.
Hebbes, TR, Thorne, AW & Crane-Robinson, C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO Journal 7, 13951402.
Hohmann, P (1983) Phosphorylation of H1 histones. Molecular and Cellular Biochemistry 57, 8192.
Hymes, J, Fleischhauer, K & Wolf, B (1995 a) Biotinylation of biotinidase following incubation with biocytin. Clinica Chimica Acta 233, 3945.
Hymes, J, Fleischhauer, K & Wolf, B (1995 b) Biotinylation of histones by human serum biotinidase: assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiency. Biochemical and Molecular Medicine 56, 7683.
Janeway, CA, Travers, P, Walport, M & Capra, JD (1999) Immuno Biology. London: Garland Publishing/Elsevier.
Johnson, LD & Hadden, JW (1975) Cyclic GMP and lymphocyte proliferation: effects on DNA-dependent RNA polymerase I and II activities. Biochemical and Biophysical Research Communications 66, 14981505.
Kaye, AM & Sheratzky, D (1969) Methylation of protein (histone) in vitro: enzymic activity from the soluble fraction of rat organs. Biochimica et Biophysica Acta 190, 527538.
Kim, K-H (1997) Regulation of mammalian acetyl-coenzyme A carboxylase. Annual Review of Nutrition 17, 7799.
Knowles, JR (1989) The mechanism of biotin-dependent enzymes. Annual Review of Biochemistry 58, 195221.
Kumar, CK, Yanagawa, N, Ortiz, A & Said, HM (1998) Mechanism and regulation of riboflavin uptake by human renal proximal tubule epithelial cell line HK-2. American Journal of Physiology 274, F104F110.
Langan, TA (1970) Phosphorylation of histones in vivo under the control of cyclic AMP and hormones. In Advances in Biochemical Psychopharmacology, pp. 307323 [Greengard, P and Costa, E editors]. New York: Raven Press.
Lee, DY, Hayes, JJ, Pruss, D & Wolffe, AP (1993) A positive role for histone acetylation in transcription factor access to nucelosomal DNA. Cell 72, 7384.
Lernhardt, W (1990) Fatty acid requirement of B lymphocytes activated in vitro. Biochemical and Biophysical Research Communications 166, 879885.
Loos, JA & Roos, D (1973) Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. III. Stimulation by tuberculin and allogeneic cells. Experimental Cell Research 79, 136142.
Maeda, Y, Kawata, S, Inui, Y, Fukuda, K, Igura, T & Matsuzawa, Y (1996) Biotin deficiency decreases ornithine transcarbamylase activity and mRNA in rat liver. Journal of Nutrition 126, 6166.
Majerus, P & Kilburn, E (1969) Acetyl coenzyme A carboxylase. The roles of synthesis and degradation in regulation of enzyme levels in rat liver. Journal of Biological Chemistry 244, 62546262.
Mock, DM (1996) Biotin. In Present Knowledge in Nutrition, pp. 220235 [Ziegler, EE and Filer, LJ Jr editors]. Washington, DC: International Life Sciences Institutes – Nutrition Foundation.
Moskowitz, M & Cheng, DKS (1985) Stimulation of growth factor production in cultured cells by biotin. In Biotin, vol. 447 [Dakshinamurti, K and Bhagavan, HN editors]. New York: New York Academy of Sciences.
Murray, A & Hunt, T (1993) The Cell Cycle. New York: Oxford University Press.
Nakanishi, S & Numa, S (1970) Purification of rat liver acetyl coenzyme A carboxylase and immunochemical studies on its synthesis and degradation. European Journal of Biochemistry 16, 161173.
Nakatani, Y, Kitamura, H, Inayama, Y & Ogawa, N (1994) Pulmonary endodermal tumor resembling fetal lung. American Journal of Surgery and Pathology 18, 637642.
Paik, WK & Kim, S (1969) Enzymatic methylation of histones. Archives of Biochemistry and Biophysics 134, 632637.
Petrelli, F, Coderoni, S, Moretti, P & Paparelli, M (1978) Effect of biotin on phosphorylation, acetylation, methylation of rat liver histones. Molecular Biology Reports 4, 8792.
Petrelli, F, Marsili, G & Moretti, P (1976) RNA, DNA, histones and interactions between histone proteins and DNA in the liver of biotin deficient rats. Biochemistry and Experimental Biology 14, 461465.
Pispa, J (1965) Animal biotinidase. Annales Medicinae Experimentalis et Biologiae Fenniae 43, 439.
Prasad, PD, Ramamoorthy, S, Leibach, FH & Ganapathy, V (1997) Characterization of a sodium-dependent vitamin transporter mediating the uptake of pantothenate, biotin and lipoate in human placental choriocarcinoma cells. Placenta 18, 527533.
Prasad, PD, Wang, H, Kekuda, R, Fujita, T, Fei, Y-J, Devoe, LD, Leibach, FH & Ganapathy, V (1998) Cloning and functional expression of a cDNA encoding a mammalian sodium-dependent vitamin transporter mediating the uptake of pantothenate, biotin, and lipoate. Journal of Biological Chemistry 273, 75017506.
Rodriguez-Melendez, R, Perez-Andrade, ME, Diaz, A, Deolarte, A, Camacho-Arroyo, I, Ciceron, I, Ibarra, I & Velazquez, A (1999) Differential effects of biotin deficiency and replenishment on rat liver pyruvate and propionyl-CoA carboxylases and on their mRNAs. Molecular Genetics and Metabolism 66, 1623.
Roos, D, De Boer, JEG & Boom, AJ (1972) Dose-response of lymphocyte carbohydrate metabolism to phytohemagglutinin. Experimental Cell Research 75, 185190.
Roos, D & Loos, JA (1973) Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. II. Relative importance of glycolysis and oxidative phosphorylation on phytohaemagglutinin stimulation. Experimental Cell Research 77, 127135.
Roth, SY & Allis, CD (1992) Chromatin condensation: does histone H1 dephosphorylation play a role? Trends in Biochemical Sciences 17, 9398.
Said, HM, Ma, TY & Kamanna, VS (1994) Uptake of biotin by human hepatoma cell line, Hep G(2): A carrier-mediated process similar to that of normal liver. Journal of Cellular Physiology 161, 483489.
Said, HM, Ortiz, A, Ma, TY & McCloud, E (1998) Riboflavin uptake by the human-derived liver cells HepG2: mechanism and regulation. Journal of Cellular Physiology 176, 588594.
Segel, GB & Lichtman, MA (1981) Amino acid transport in human lymphocytes: distinctions in the enhanced uptake with PHA treatment or amino acid deprivation. Journal of Cellular Physiology 106, 303306.
Shriver, BJ & Allred, JB (1990) Storage forms of biotin in rat liver. FASEB Journal 4, A501 Abstr.
Shriver, BJ, Roman-Shriver, C & Allred, JB (1993) Depletion and repletion of biotinyl enzymes in liver of biotin-deficient rats: Evidence of a biotin storage system. Journal of Nutrition 123, 11401149.
Sommerville, J, Baird, J & Turner, BM (1993) Histone H4 acetylation and transcription in amphibian chromatin. Journal of Cell Biology 120, 277290.
Spence, JT & Koudelka, AP (1984) Effects of biotin upon the intracellular level of cGMP and the activity of glucokinase in cultured rat hepatocytes. Journal of Biological Chemistry 259, 63936396.
Velazquez, A, Teran, M, Baez, A, Gutierrez, J & Rodriguez, R (1995) Biotin supplementation affects lymphocyte carboxylases and plasma biotin in severe protein-energy malnutrition. American Journal of Clinical Nutrition 61, 385391.
Velazquez, A, Zamudio, S, Baez, A, Murguia-Corral, R, Rangel-Peniche, B & Carrasco, A (1990) Indicators of biotin status: A study of patients on prolonged total parenteral nutrition. European Journal of Clinical Nutrition 44, 1116.
Vesely, DL (1982) Biotin enhances guanylate cyclase activity. Science 216, 13291330.
Vesely, DL, Wormser, HC & Abramson, HN (1984) Biotin analogues activate guanylate cyclase. Molecular and Cellular Biochemistry 60, 109114.
Waithe, WI, Dauphinais, C, Hathaway, P & Hirschhorn, K (1975) Protein synthesis in stimulated lymphocytes. II. Amino acid requirements. Cellular Immunology 17, 323334.
Wang, H, Huang, W, Fei, Y-J, Xia, H, Fang-Yeng, TL, Leibach, FH, Devoe, LD, Ganapathy, V & Prasad, PD (1999) Human placental Na&+-dependent multivitamin transporter. Journal of Biological Chemistry 274, 1487514883.
Weinberg, MD & Utter, MF (1979) Effect of thyroid hormone on the turnover of rat liver pyruvate carboxylase and pyruvate dehydrogenase. Journal of Biological Chemistry 254, 94929499.
Weinberg, MD & Utter, MF (1980) Effect of streptozotocin-induced diabetes mellitus on the turnover of rat liver pyruvate carboxylase and pyruvate dehydrogenase. Biochemical Journal 188, 601608.
Williams, GT, Lau, KMK, Coote, JM & Johnstone, AP (1985) NAD metabolism and mitogen stimulation of human lymphocytes. Experimental Cell Research 160, 419426.
Wolf, B, Heard, GS, McVoy, JRS, & Grier, RE (1985) Biotinidase deficiency. Annals of the New York Academy of Sciences 447, 252262.
Wolffe, A (1998) Chromatin. San Diego, CA: Academic Press.
Wood, HG & Barden, RE (1977) Biotin enzymes. Annual Review of Biochemistry 46, 385413.
Zempleni, J & Mock, DM (1998) Uptake and metabolism of biotin by human peripheral blood mononuclear cells. American Journal of Physiology 275, C382C388.
Zempleni, J & Mock, DM (1999 a) The efflux of biotin from human peripheral blood mononuclear cells. Journal of Nutritional Biochemistry 10, 105109.
Zempleni, J & Mock, DM (1999 b) Human peripheral blood mononuclear cells: inhibition of biotin transport by reversible competition with pantothenic acid is quantitatively minor. Journal of Nutritional Biochemistry 10, 427432.
Zempleni, J & Mock, DM (1999 c) Mitogen-induced proliferation increases biotin uptake into human peripheral blood mononuclear cells. American Journal of Physiology 276, C1079C1084.
Zempleni, J & Mock, DM (2000 a) Lymphocytes increase biotin uptake during G1 phase of the cell cycle to increase biotinylation of histones. FASEB Journal 14, A243 Abstr.
Zempleni, J & Mock, DM (2000 b) Proliferation of peripheral blood mononuclear cells increases riboflavin influx. Proceedings of the Society for Experimental Biology and Medicine 225, 7279.
Zempleni, J & Mock, DM (2000 c) Utilization of biotin in proliferating human lymphocytes. Journal of Nutrition 130, 335S337S.

Keywords

Related content

Powered by UNSILO

Biotin homeostasis during the cell cycle

  • Janos Zempleni (a1) and Donald M Mock (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.