Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-9dmbd Total loading time: 0.372 Render date: 2021-03-05T12:08:30.770Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Barley β-Glucan: An Antinutritional Factor in Poultry Feeding

Published online by Cambridge University Press:  14 December 2007

J. M. McNab
Affiliation:
Institute of Animal Physiology and Genetics Research, Edinburgh Research Station, Roslin, Midlothian EH25 9PS
R. R. Smithard
Affiliation:
Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU
Rights & Permissions[Opens in a new window]

Abstract

Image of the first page of this article
Type
Research Article
Copyright
Copyright © The Nutrition Society 1992

References

Aastrup, S. & Jørgensen, K. G. (1988). Application of the Calcofluor flow injection analysis method for determination of β-glucan in barley, malt, wort, and beer. Journal of the American Society of Brewing Chemists 46, 7681.Google Scholar
Adams, O. L. & Naber, E. C. (1969). Effect of physical and chemical treatment of grains on growth of and feed utilization by the chick. 1. The effect of water and acid treatments of corn, wheat, barley and expanded or germinated grains on chick performance. Poultry Science 48, 853858.CrossRefGoogle ScholarPubMed
Ahluwalia, B. & Ellis, E. E. (1984). A rapid and simple method for the determination of starch and β-glucan in barley and malt. Journal of the Institute of Brewing 90, 254259.CrossRefGoogle Scholar
Åman, P. & Graham, H. (1987). Mixed-linked β-(1 → 3), (1 → < 4)-D-glucans in the cell walls of barley and oats-chemistry and nutrition. Scandinavian Journal of Gastroenterology 22 (Suppl. 129), 4251.CrossRefGoogle Scholar
Anderson, J. O., Dobson, D. C. & Wagstaff, R. K. (1961). Studies on the value of hulless barley in chick diets and means of increasing this value. Poultry Science 40, 15711584.CrossRefGoogle Scholar
Anderson, M. A., Cook, J. A. & Stone, B. A. (1978). Enzymatic determination of 1,3:1,4-β-glucans in barley grain and other cereals. Journal of the Institute of Brewing 84, 233239.CrossRefGoogle Scholar
Arscott, G. H. & Rose, R. J. (1960). Use of barley in high-efficiency broiler rations. 4. Influence of amylolytic enzymes on efficiency of utilization, water consumption and litter condition. Poultry Science 39, 9395.CrossRefGoogle Scholar
Aspinall, G. O. & Carpenter, R. C. (1984). Structural investigations on the non-starchy polysaccharides of oat bran. Carbohydrate Polymers 4, 271282.CrossRefGoogle Scholar
Bamforth, C. W. (1982). Barley β-glucans–their role in malting and brewing. Brewers Digest 57, 2227, 35.Google Scholar
Bathgate, G. N., Palmer, G. H. & Wilson, G. (1974). Action of endo-β-1,3-glucanase on barley and malt β-glucans. Journal of the Institute of Brewing 80, 278285.CrossRefGoogle Scholar
Berg, L. R. (1959). Enzyme supplementation of barley diets for laying hens. Poultry Science 38, 11321139.CrossRefGoogle Scholar
Braaten, J. T., Wood, P. J., Scott, F. W., Riedel, K. D., Poste, L. M. & Collins, M. W. (1991). Oat gum lowers glucose and insulin after an oral glucose load. American Journal of Clinical Nutrition 53, 14251430.Google ScholarPubMed
Broz, J. (1989). Evaluation of Trichoderma viride enzyme complex as a feed additive for broilers. Proceedings of the 7th European Symposium on Poultry Nutrition, pp. 237238 [Brufau, J., editor]. Lloret de Mar: World's Poultry Science Association.Google Scholar
Broz, J. & Frigg, M. (1986). Effects of beta-glucanase on the feeding value of broiler diets based on barley or oats. Archiv für Geflügelkunde 50, 4147.Google Scholar
Burnett, G. S. (1966). Studies of viscosity as the probable factor involved in the improvement of certain barleys for chickens by enzyme supplementation. British Poultry Science 7, 5575.CrossRefGoogle Scholar
Campbell, G. L., Campbell, L. D. & Classen, H. L. (1983 b). Utilization of rye by chickens: effect of microbial status, diet gamma irradiation and sodium taurocholate supplementation. British Poultry Science 24, 191203.CrossRefGoogle Scholar
Campbell, G. L., Classen, H. L. & Ballance, G. M. (1986). Gamma irradiation treatment of cereal grains for chick diets. Journal of Nutrition 116, 560569.Google ScholarPubMed
Campbell, G. L., Classen, H. L. & Goldsmith, K. A. (1983 a). Effect of fat retention on the rachitogenic effect of rye fed to broiler chicks. Poultry Science 62, 22182223.CrossRefGoogle ScholarPubMed
Campbell, G. L., Classen, H. L. & Salmon, R. E. (1984). Enzyme supplementation of barley diets for broilers. Feedstuffs 56 (19), 2627.Google Scholar
Choct, M. & Annison, G. (1992 a). The inhibition of nutrient digestion by wheat pentosans. British Journal of Nutrition 67, 123132.CrossRefGoogle ScholarPubMed
Choct, M. & Annison, G. (1992 b). Anti-nutritive effect of wheat pentosans in broiler chickens: role of viscosity and gut microflora. British Poultry Science 33, 821834.CrossRefGoogle Scholar
Clarke, A. E. & Stone, B. A. (1966). Enzymic hydrolysis of barley and other β-glucans by a β-(1 →4)-glucan hydrolase. Biochemical Journal 99, 582588.CrossRefGoogle ScholarPubMed
Classen, H. L., Campbell, G. L., Rossnagel, B. G., Bhatty, R. & Reichert, R. D. (1985). Studies on the use of hulless barley in chick diets: deleterious effects and methods of alleviation. Canadian Journal of Animal Science 65, 725733.CrossRefGoogle Scholar
Coates, M. E., Cole, C. B., Fuller, R., Houghton, S. B. & Yokota, H. (1981). The gut microflora and the uptake of glucose from the small intestine of the chick. British Poultry Science 22, 289294.CrossRefGoogle ScholarPubMed
Coon, C. N., Shepler, R., McFarland, D. & Nordheim, J. (1979). The nutritional evaluation of barley selections and cultivars from Washington State. Poultry Science 58, 913918.CrossRefGoogle Scholar
Davenport, H. W. (1983). Physiology of the Digestive Tract: an introductory text, 5th edn. Chicago, IL: Year Book Medical Publishers.Google Scholar
Davidson, M. H., Dugan, L. D., Burns, J. H., Bova, J., Story, K. & Drennan, K. B. (1991). The hypocholesterolemic effect of β-glucan in oatmeal and oat bran: a dose-controlled study. Journal of the American Medical Association 265, 18331839.CrossRefGoogle Scholar
Edney, M. J., Marchylo, B. A. & MacGregor, A. W. (1991). Structure of total barley beta-glucan. Journal of the Institute of Brewing 97, 3944.CrossRefGoogle Scholar
Elsenhans, B., Süfke, U., Blume, R. & Caspary, W. F. (1980). The influence of carbohydrate gelling agents on rat intestinal transport of monosaccharides and neutral amino acids in vitro. Clinical Science 59, 373380.CrossRefGoogle ScholarPubMed
Elsenhans, B., Süfke, U., Blume, R. & Caspary, W. F. (1981). In vitro inhibition of rat intestinal surface hydrolysis of disaccharides and dipeptides by guaran. Digestion 21, 98103.CrossRefGoogle ScholarPubMed
Elwinger, K. & Säterby, B. (1986). Comparison of β-glucanase (BG) and virginiamycin (VM) in broiler diets containing barley and oats. In European Poultry Conference, Paris, pp. 249253 [Larbier, M., editor]. Paris: World's Poultry Science Association.Google Scholar
Fleming, M. & Kawakami, K. (1977). Studies of the fine structure of β-D-glucans of barleys extracted at different temperatures. Carbohydrate Research 57, 1523.CrossRefGoogle Scholar
Fleming, M. & Manners, D. J. (1966). A comparison of the fine-structure of lichenin and barley glucan. Biochemical Journal 100, 4P5P.Google Scholar
Flourie, B., Vidon, N., Florent, C. H. & Bernier, J. J. (1984). Effect of pectin on jejunal glucose absorption and unstirred layer thickness in normal man. Gut 25, 936941.CrossRefGoogle ScholarPubMed
Fry, R. E., Allred, J. B., Jensen, L. S. & McGinnis, J. (1957). Influence of water-treatment on nutritional value of barley. Proceedings of the Society for Experimental Biology and Medicine 95, 249251.CrossRefGoogle ScholarPubMed
Fry, R. E., Allred, J. B., Jensen, L. S. & McGinnis, J. (1958). Influence of enzyme supplementation and water treatment on the nutritional value of different grains for poults. Poultry Science 37, 372375.CrossRefGoogle Scholar
Gill, A. A., Morgan, A. G. & Smith, D. B. (1982). Total β-glucan content of some barley cultivars. Journal of the Institute of Brewing 88, 317319.CrossRefGoogle Scholar
Gohl, B. (1977). Effects of Hydrocolloids on Productive Value and Feeding Characteristics of Barley. Ph.D. Thesis, University of Uppsala.Google Scholar
Gohl, B., Aldén, S., Elwinger, K. & Thomke, S. (1978). Influence of β-glucanase on feeding value of barley for poultry and moisture content of excreta. British Poultry Science 19, 4147.CrossRefGoogle Scholar
Gohl, B. & Thomke, S. (1976). Digestibility coefficients and metabolizable energy of barley diets for layers as influenced by geographical area of production. Poultry Science 55, 23692374.CrossRefGoogle Scholar
Hamm, D. (1958). Pelleting, soaking, and adding enzymes to feeds. In Proceedings of the Arkansas Formula Feed Conference. Fayetteville, AR: University of Arkansas.Google Scholar
Henry, R. J. (1984). A simplified enzymic method for the determination of (1 → 3) (1 →4)-β-glucans in barley. Journal of the Institute of Brewing 90, 178180.CrossRefGoogle Scholar
Henry, R. J. (1987). Pentosan and (1 → 3), (1 →4)-β-glucans concentrations in endosperm and wholegrain of wheat, barley, oats and rye. Journal of Cereal Science 6, 253258.CrossRefGoogle Scholar
Henry, R. J. & Blakeney, A. B. (1986). Determination of total β-glucan in malt. Journal of the Institute of Brewing 92, 354356.CrossRefGoogle Scholar
Henry, R. J. & Blakeney, A. B. (1988). Evaluation of a general method for the measurement of (1 → 3), (1 →4)-β-glucans. Journal of the Science of Food and Agriculture 44, 7587.CrossRefGoogle Scholar
Herstad, O. (1987). Cereal with higher fibre content (barley, oats, millet). Proceedings of the 6th European Symposium on Poultry Nutrition, pp. A15A25 [Vogt, H., editor]. Königslutter: World's Poultry Science Association.Google Scholar
Herstad, O. & McNab, J. M. (1975). The effect of heat treatment and enzyme supplementation on the nutritive value of barley for broiler chicks. British Poultry Science 16, 18.CrossRefGoogle Scholar
Hesselman, K. (1984). Beta-glucanase supplementation to barley based diets for broiler chickens. Proceedings of the XVII World's Poultry Science Congress, Helsinki, pp. 389391.Google Scholar
Hesselman, K. & Åman, P. (1985). A note on microscopy studies on water- and β-glucanase-treated barley. Swedish Journal of Agricultural Research 15, 139143.Google Scholar
Hesselman, K. & Åman, P. (1986). The effect of β-glucanase on the utilization of starch and nitrogen by broiler chickens fed on barley of low- or high-viscosity. Animal Feed Science and Technology 15, 8393.CrossRefGoogle Scholar
Hesselman, K., Elwinger, K., Nilsson, M. & Thomke, S. (1981). The effect of β-glucanase supplementation, stage of ripeness, and storage treatment of barley in diets fed to broiler chickens. Poultry Science 60, 26642671.CrossRefGoogle Scholar
Hesselman, K., Elwinger, K. & Thomke, S. (1982). Influence of increasing levels of β-glucanase on the productive value of barley diets for broiler chickens. Animal Feed Science and Technology 7, 351358.CrossRefGoogle Scholar
Hijikuro, S. (1983). Improvement of feeding value of barley by enzyme supplementation. Japan Agricultural Research Quarterly 17, 5558.Google Scholar
Jensen, L. S., Fry, R. E., Allred, J. B. & McGinnis, J. (1957). Improvement in the nutritional value of barley for chicks by enzyme supplementation. Poultry Science 36, 919921.CrossRefGoogle Scholar
Jensen, S. Å. & Aastrup, S. (1981). A fluorimetric method for measuring 1, 3:1,4-β-glucan in beer, wort, malt and barley by use of Calcoflour. Carlsberg Research Communications 46, 8795.CrossRefGoogle Scholar
Jeroch, H., Helander, E., Schlöffel, H.-J., Engerer, K.-H., Pingel, H. & Gebhardt, G. (1991). [Examination of the effectiveness of an enzyme preparation “Avizyme®” containing β-glucanase in broiler fattening rations based on barley.] Archiv für Geflügelkunde 55, 2225.Google Scholar
Jeroch, H., Jackisch, B., Aboud, M., Weber, K. & Gebhardt, G. (1990). [Results of further evaluation of an enzyme preparation containing β-glucanase, Prowiko B, in broiler fattening rations based on barley.] Archiv für Tierernährung 40, 317327.CrossRefGoogle Scholar
Johnson, I. T. & Gee, J. M. (1981). Effect of gel-forming gums on the intestinal unstirred layer and sugar transport in vitro. Gut 22, 398403.CrossRefGoogle ScholarPubMed
Jonsson, E. & Hemmingsson, S. (1991). Establishment in the piglet gut of lactobacilli capable of degrading mixed-linked β-glucans. Journal of Applied Bacteriology 70, 512516.CrossRefGoogle ScholarPubMed
Jørgensen, K. G. & Aastrup, S. (1988). Quantification of high molecular weight (1 → 3) (1 →4)-β-D-glucan using Calcofluor complex formation and flow injection analysis. II. Determination of total β-glucan content of barley and malt. Carlsberg Research Communications 53, 287296.CrossRefGoogle Scholar
Laerdal, O. A., Bird, H. R., Sunde, M. L. & Phillips, P. H. (1959). Improvement in nutritional value of some barleys by the addition of malt or enzyme supplements. Poultry Science 38, 1221.Google Scholar
Lawrence, T. L. J. (1976). Some effects of processing on the nutritive value of feedstuffs for growing pigs. Proceedings of the Nutrition Society 35, 237243.CrossRefGoogle ScholarPubMed
Leong, K. C., Jensen, L. S. & McGinnis, J. (1958). Effect of water treatment and fungal enzyme addition on metabolizable energy of pearled barley. Poultry Science 37, 1220.Google Scholar
Leong, K. C., Jensen, L. S. & McGinnis, J. (1962). Effect of water treatment and enzyme supplementation on the metabolizable energy of barley. Poultry Science 41, 3639.CrossRefGoogle Scholar
Luchsinger, W. W., Chen, S.-C. & Richards, A. W. (1965). Mechanism of action of malt beta-glucanases. 9. The structure of barley beta-D-glucan and the specificity of A11-endo-beta-glucanase. Archives of Biochemistry and Biophysics 112, 531536.CrossRefGoogle ScholarPubMed
McCleary, B. V. & Glennie-Holmes, M. (1985). Enzymic quantification of (1 → 3) (1 →4)-β-D-glucan in barley and malt. Journal of the Institute of Brewing 91, 285295.CrossRefGoogle Scholar
McCracken, K. J., Urquhart, R. & Bedford, M. R. (1993). Effect of heat treatment and enzyme supplementation of barley-based diets on performance of broiler chicks. Proceedings of the Nutrition Society (In the press).Google Scholar
Mannion, P. F. (1981). Enzyme supplementation of barley based diets for broiler chickens. Australian Journal of Experimental Agriculture and Animal Husbandry 21, 296302.CrossRefGoogle Scholar
Martin, H. L. & Bamforth, C. W. (1981). An enzymic method for the measurement of total and water-soluble β-glucan in barley. Journal of the Institute of Brewing 87, 8891.CrossRefGoogle Scholar
Meyer, J. H. & Doty, J. E. (1988). GI transit and absorption of solid food: multiple effects of guar. American Journal of Clinical Nutrition 48, 267273.Google ScholarPubMed
Meyer, J. H., Gu, Y. G., Jehn, D. & Taylor, I. L. (1988). Intragastric vs intraintestinal viscous polymers and glucose tolerance after liquid meals of glucose. American Journal of Clinical Nutrition 48, 260266.Google ScholarPubMed
Morimoto, H., Kubota, D. & Akai, N. (1966). [Effect of cellulase on barley ration. 1. Feeding of layers and determination of metabolizable energy.] Japanese Poultry Science 3, 167170.CrossRefGoogle Scholar
Moscatelli, E. A., Ham, E. A. & Rickes, E. L. (1961). Enzymatic properties of a β-glucanase from Bacillus subtilis. Journal of Biological Chemistry 236, 28582862.Google ScholarPubMed
Moss, B. R., Beeckler, A. F., Newman, C. W. & El-Negoumy, A. M. (1977). Enzyme supplementation of broiler rations. Poultry Science 56, 1741.Google Scholar
Newman, R. K., Newman, C. W. & Eslick, R. F. (1985). Effect of fungal fermentation and other treatments on nutritional value of waxy barley fed to chicks. Poultry Science 64, 15141518.CrossRefGoogle Scholar
Novacek, E. J. & Petersen, C. F. (1967). Metabolizable energy of the anatomical parts and other fractions of western barley and the effect of enzymes and water treatment. Poultry Science 46, 10081015.CrossRefGoogle ScholarPubMed
Parrish, F. W., Perlin, A. S. & Reese, E. T. (1960). Selective enzymolysis of poly-β-D-glucans, and the structure of the polymers. Canadian Journal of Chemistry 38, 20942104.CrossRefGoogle Scholar
Perlin, A. S. & Suzuki, S. (1962). The structure of lichenin: selective enzymolysis studies. Canadian Journal of Chemistry 40, 5056.CrossRefGoogle Scholar
Pettersson, D., Graham, H. & Åman, P. (1990). Enzyme supplementation of broiler chicken diets based on cereals with endosperm cell walls rich in arabinoxylans or mixed-linked β-glucans. Animal Production 51, 201207.CrossRefGoogle Scholar
Potter, L. M., Stutz, M. W. & Matterson, L. D. (1965). Metabolizable energy and digestibility coefficients of barley for chicks as influenced by water treatment or by presence of fungal enzyme. Poultry Science 44, 565573.CrossRefGoogle ScholarPubMed
Rexen, B. (1981). Use of enzymes for improvement of feed. Animal Feed Science and Technology 6, 105114.CrossRefGoogle Scholar
Rickes, E. L., Ham, E. A., Moscatelli, E. A. & Ott, W. H. (1962). The isolation and biological properties of a β-glucanase from B. subtilis. Archives of Biochemistry and Biophysics 96, 371375.CrossRefGoogle ScholarPubMed
Rose, R. J. & Arscott, G. H. (1962). Use of barley in high-efficiency broiler rations. 5. Further studies on the use of enzymes, soaking and pelleting barley for chicks. Poultry Science 41, 124130.CrossRefGoogle Scholar
Rotter, B. A., Friesen, O. D., Guenter, W. & Marquardt, R. R. (1990). Influence of enzyme supplementation on the bioavailable energy of barley. Poultry Science 69, 11741181.CrossRefGoogle Scholar
Rotter, B. A., Marquardt, R. R., Guenter, W., Biliaderis, C. & Newman, C. W. (1989). In vitro viscosity measurements of barley extracts as predictors of growth responses in chicks fed barley-based diets supplemented with a fungal enzyme preparation. Canadian Journal of Animal Science 69, 431439.CrossRefGoogle Scholar
Salih, M. E., Classen, H. L. & Campbell, G. L. (1991). Response of chickens fed on hull-less barley to dietary β-glucanase at different ages. Animal Feed Science and Technology 33, 139149.CrossRefGoogle Scholar
Staudte, R. G., Woodward, J. R., Fincher, G. B. & Stone, B. A. (1983). Water-soluble (1 → 3), (1 →4)-β-D-glucans from barley (Hordeum vulgare) endosperm. III. Distribution of cellotriosyl and cellotetraosyl residues. Carbohydrate Polymers 3, 299312.CrossRefGoogle Scholar
Stutz, M. W., Matterson, L. D. & Potter, L. M. (1961). Metabolizable energy of barley for chicks as influenced by water treatment or by presence of fungal enzyme. Poultry Science 40, 1462.Google Scholar
Suga, Y., Kawai, M., Noguchi, S., Shimura, G. & Samejima, H. (1978). Application of cellulolytic and plant tissue macerating enzyme of Irpex lacteus Fr. as feed additive enzyme. Agricultural and Biological Chemistry 42, 347350.Google Scholar
Thomas, J. M., Jensen, L. S. & McGinnis, J. (1961). Interference with the nutritional improvement of water-treated barley by antibiotics. Poultry Science 40, 12041208.CrossRefGoogle Scholar
Varum, K. M., Martinsen, A. & Smidsrod, O. (1991). Fractionation and viscometric characterisation of a (1 → 3), (1 →4)-β-glucan from oat, and universal calibration of a high-performance size-exclusion chromatographic system by the use of fractionated β-glucans, alginates and pullulans. Food Hydrocolloids 5, 363374.CrossRefGoogle Scholar
Wharton, F. D., Classen, L. J. & Fritz, J. C. (1958). Influence of amylases on growth of chicks and poults. Federation Proceedings 17, 497.Google Scholar
White, W. B., Bird, H. R., Sunde, M. L., Marlett, J. A., Prentice, N. A. & Burger, W. C. (1983). Viscosity of β-D-glucan as a factor in the enzymatic improvement of barley for chicks. Poultry Science 62, 853862.CrossRefGoogle Scholar
White, W. B., Bird, H. R., Sunde, M. L., Prentice, N., Burger, W. C. & Marlett, J. A. (1981). The viscosity interaction of barley beta-glucan with Trichoderma viride cellulase in the chick intestine. Poultry Science 60, 10431048.CrossRefGoogle ScholarPubMed
Willingham, H. E., Jensen, L. S. & McGinnis, J. (1958). Studies on the role of enzyme supplements and water treatment on the nutritional value of barley. Poultry Science 37, 1253.Google Scholar
Willingham, H. E., Jensen, L. S. & McGinnis, J. (1959). Studies on the role of enzyme supplements and water treatment for improving the nutritional value of barley. Poultry Science 38, 539544.CrossRefGoogle Scholar
Willingham, H. E., Leong, K. C., Jensen, L. S. & McGinnis, J. (1960 a). Influence of geographical area of production on response of different barley samples to enzyme supplements or water treatment. Poultry Science 39, 103108.CrossRefGoogle Scholar
Willingham, H. E., McGinnis, J., Nelson, F. & Jensen, L. S. (1960 b). Relation of superiority of water-treated barley over enzyme supplements to antibiotics. Poultry Science 39, 1307.Google Scholar
Wood, P. J., & Fulcher, R. G. (1978). Interaction of some dyes with cereal β-glucans. Cereal Chemistry 55, 952966.Google Scholar
Wood, P. J., Weisz, J. & Blackwell, B. A. (1991). Molecular characterization of cereal β-D-glucans. Structural analysis of oat β-D-glucan and rapid structural evaluation of β-D-glucans from different sources by high-performance liquid chromatography of oligosaccharides released by lichenase. Cereal Chemistry 68, 3139.Google Scholar
Woodward, J. R., Fincher, G. B. & Stone, B. A. (1983 a). Water-soluble (1 → 3), (1 →4)-β-D-glucans from barley (Hordeum vulgare) endosperm. II. Fine structure. Carbohydrate Polymers 3, 207225.CrossRefGoogle Scholar
Woodward, J. R., Phillips, D. R. & Fincher, G. B. (1983 b). Water-soluble (1 → 3), (1 →4)-β-D-glucans from barley (Hordeum vulgare) endosperm. I. Physicochemical properties. Carbohydrate Polymers 3, 143156.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 586 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Barley β-Glucan: An Antinutritional Factor in Poultry Feeding
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Barley β-Glucan: An Antinutritional Factor in Poultry Feeding
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Barley β-Glucan: An Antinutritional Factor in Poultry Feeding
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *