Skip to main content Accessibility help
×
Home

Application of X-ray Photoelectron Spectroscopy (XPS) for the Surface Characterization of Gunshot Residue (GSR)

  • A. J. “Skip” Schwoeble (a1), Brian R. Strohmeier (a1), Kristin L. Bunker (a1), Darlene R. McAllister (a1), James P. Marquis (a1), John D. Piasecki (a1) and Nikki M. McAllister (a1)...

Extract

Gunshot residue (GSR) is typically found on the hands or clothing of persons who have been in the environment of a discharging firearm, but it may also be found on objects in the vicinity of the discharge. Computer-controlled scanning electron microscopy (CCSEM) is the method preferred by the forensic community for the automated analysis of GSR. GSR samples are therefore typically collected from a crime suspect's hands and/or clothing using SEM sample stubs coated with a conductive adhesive. The three major components in modern firearm cartridge primers are lead styphanate (initiator), antimony sulfide (fuel), and barium nitrate (oxidizer). GSR consists of the products of combustion of these primer materials. Large populations of particles in the size range of ~1–10 μm are rapidly screened by energy-dispersive X-ray spectroscopy (EDS) for the presence of combinations of Pb, Sb, and Ba. When combinations of these three elements are detected, the particles are flagged as potential GSR particulate. Flagged particles with significant Pb/Sb/Ba compositions are subsequently relocated for a live identification and a positive confirmation of GSR. Positive particles are classified as being either “characteristic of GSR” (that is, all three key elements are present) or “consistent with GSR” (that is, any two of the key elements are present) based on the particle composition and morphology. Classification is based on the presence of the constituent elements and is not dependant on the element amounts. If a particle does not meet the proper compositional or morphological criteria, it is rejected as GSR. However, CCSEM generally does not provide information regarding the population of particles much less than 1 μm or the surface chemistry of the GSR particles. This article examines the fine fraction of GSR particles with high-resolution electron microscopy and complements the microscopy data with surface chemistry information from X-ray photoelectron spectroscopy (XPS).

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Application of X-ray Photoelectron Spectroscopy (XPS) for the Surface Characterization of Gunshot Residue (GSR)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Application of X-ray Photoelectron Spectroscopy (XPS) for the Surface Characterization of Gunshot Residue (GSR)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Application of X-ray Photoelectron Spectroscopy (XPS) for the Surface Characterization of Gunshot Residue (GSR)
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
[1]Wolten, GM, Nesbitt, RS, Calloway, AR, Loper, GL, and Jones, PF, “Final Report on Particle Analysis for Gunshot Residue Detection,” The Aerospace Corporation, El Segundo, CA, ATR-77 (7915)-3, 1977.
[2]Tillman, WL, J Forensic Sci 32 (1987) 6271.
[3]White, RS and Owens, AD, J Forensic Sci 32 (1987) 15951603.
[4]DeGaetano, D and Siegel, JA, J Forensic Sci 35 (1990) 1087–95.
[5]Schwoeble, AJ and Exline, DL, Current Methods in Forensic Gunshot Residue Analysis, CRC Press, Boca Raton, FL, 2000.
[6]Frost, GE, Ammunition Making—An Insider's Story, The National Rifle Association, Fairfax, VA, 1990.
[7]Watts, JF and Wolsetnholme, J, An Introduction to Surface Analysis by XPS and AES, John Wiley & Sons Ltd, Chichester, West Sussex, 2003.
[8]Baer, DR and Engelhard, MH, J Electron Spectrosc Related Phenom, 178(79) (2010) 415–32.
[9]Baer, DR, Gasper, DJ, Nachimuthu, P, Techane, SD, and Castner, DG, Anal Bioanal Chem 396 (2010) 9831002.
[10]Schwoeble, AJ, Strohmeier, BR, and Piasecki, JD, Proc SPIE 7729 (2010) 772916-1772916-16.
[11]Watts, JF, Surf Interface Anal 42 (2010) 358–62.
[12] M D'Uffizi, Falso, G, Ingo, GM, and Padeletti, G, Surf Interface Anal 34 (2002) 502–06.
[13]Coumbaros, J, Kirkbride, KP, Klass, G, and Skinner, W, Forensic Sci Int 119 (2001) 7281.
[14]Collins, P, Coumbaros, J, Horsley, G, Lynch, B, Kirkbride, KP, Skinner, W, and Klass, G, J Forensic Sci 48 (2003) 538–53.
[15]Moulder, JF, Stickle, WF, Sobol, PE, and Bomben, KD, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prairie, MN, 1992.
[16]Wagner, CD, Naumkin, AV, Kraut-Vass, A, Allison, JW, Powell, CJ, and Rumble, JR Jr., “NIST X-ray Photoelectron Spectroscopy Database,” Version 3.5, National Institute for Standards and Technology, Gaithersburg, MD, 2003. Available online at: http://srdata.nist.gov/xps/Default.aspx.

Application of X-ray Photoelectron Spectroscopy (XPS) for the Surface Characterization of Gunshot Residue (GSR)

  • A. J. “Skip” Schwoeble (a1), Brian R. Strohmeier (a1), Kristin L. Bunker (a1), Darlene R. McAllister (a1), James P. Marquis (a1), John D. Piasecki (a1) and Nikki M. McAllister (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed