Let K be a convex body in Euclidean space Rd, d≥2, with volume V(K) = 1, and n ≥ d +1 be a natural number. We select n independent random points y1, y2, …, yn from K (we assume they all have the uniform distribution in K). Their convex hull co {y1, y2, …, yn} is a random polytope in K with at most n vertices. Consider the expected value of the volume of this polytope
It is easy to see that if U: Rd → Rd is a volume preserving affine transformation, then for every convex body K with V(K) = 1, m(K, n) = m(U(K), n).