1.
Chen, I., Kiming, I. and Rasmussen, J. B., On congruences mod p^{
m
} between eigenforms and their attached Galois representations. J. Number Theory (3)
130
2010, 608–619.

2.
Chen, I., Kiming, I. and Wiese, G., On modular Galois representations modulo prime powers. Int. J. Number Theory
9
2013, 91–113.

3.
Coleman, R. and Stein, W., Approximation of eigenforms of infinite slope by eigenforms of finite slope. In Geometric Aspects of Dwork Theory, Vols I, II, Walter de Gruyter (Berlin, 2004), 437–449.

4.
Deligne, P. and Rapoport, M., Les schémas de modules de courbes elliptiques. In Modular Functions of One Variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972
(*Lecture Notes in Mathematics ***349**
) (eds Deligne, P. and Kuyk, W.), Springer (Berlin, 1973), 143–316.

5.
Diamond, F. and Im, J., Modular forms and modular curves. In Seminar on Fermat’s Last Theorem (Toronto, ON, 1993–1994)
(*CMS Conference Proceedings ***17**
), American Mathematical Society (1995), 39–133.

6.
Diamond, F. and Shurman, J., A First Course in Modular Forms
(*Graduate Texts in Mathematics ***228**
), Springer (2005), 19–24.

7.
Edixhoven, B., The weight in Serre’s conjectures on modular forms. Invent. Math. (3)
109
1992, 563–594.

8.
Gross, B., A tameness criterion for Galois representations associated to modular forms mod *p*
. Duke Math. J.
61(2) 1990, 445–517.

9.
Igusa, J.-I., Class number of a definite quaternion with prime discriminant. Proc. Natl. Acad. Sci. USA
44
1958, 312–314.

10.
Jochnowitz, N., Congruences between systems of eigenvalues of modular forms. Trans. Amer. Math. Soc.
270
1982, 269–285.

11.
Katz, N. M.,
*p*-adic properties of modular schemes and modular forms. In Modular Functions of One Variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972)
(*Lecture Notes in Mathematics ***350**
), Springer (Berlin, 1973), 69–190.

12.
Katz, N. M., A result on modular forms in characteristic *p*
. In Modular Functions of One Variable V
(*Lecture Notes in Mathematics ***601**
) (eds Serre, J.-P. and Zagier, D. B.), Springer (1977), 53–61.

14.
Kiming, I., On the asymptotics of the number of *p*̄-core partitions of integers. Acta Arith.
80
1997, 127–139.

15.
Queen, C., The existence of *p*-adic abelian *L*-functions. In Number Theory and Algebra, (ed. Zassenhaus, H.), Academic Press (1977), 263–288.

16.
Serre, J.-P., Congruences et formes modulaires [d’après H. P. F. Swinnerton-Dyer]. In Séminaire Bourbaki
(*Lecture Notes in Mathematics ***317**
), Springer (1973), 319–338.

17.
Serre, J.-P., Formes modulaires et fonctions zêta *p*-adiques. In Modular Functions of One Variable III
(*Lecture Notes in Mathematics ***350**
) (eds Kuyk, W. and Serre, J.-P.), Springer (1973), 191–268.

18.
Swinnerton-Dyer, H. P. F., On *ℓ*-adic representations and congruences for coefficients of modular forms. In Modular Functions of One Variable III
(*Lecture Notes in Mathematics ***350**
) (eds Kuyk, W. and Serre, J.-P.), Springer (1973), 1–55.

19.
Taixés i Ventosa, X. and Wiese, G., Computing congruences of modular forms and Galois representations modulo prime powers. In Arithmetic, Geometry, Cryptography and Coding Theory 2009
(*Contemporary Mathematics ***521**
) (eds Kohel, D. and Rolland, R.), American Mathematical Society (Providence, RI, 2010), 145–166.

20.
Washington, L. C., Introduction to Cyclotomic Fields
(*Graduate Texts in Mathematics ***83**
), Springer (1982).