Skip to main content Accessibility help
×
Home

Double Meijer transformations of certain hypergeometric functions

  • H. M. Srivastava (a1) and J. P. Singhal (a1)

Extract

Following the usual notation for generalized hypergeometric functions we let

(a) denotes the sequence of A parameters

that is, there are A of the a parameters and B of the b parameters. Thus ((a))m has the interpretation

with a similar interpretation for ((b))m; Δ(k; α) stands for the set of k parameters

and for the sake of brevity, the pair of parameters like α + β, α − β will be written as α ± β, the gamma product Γ(α + β) Γ(α − β) as Γ(α ± β), and so on.

Copyright

References

Hide All
(1)Abdul-Halim, N. and Al-Salam, W. A.Double Euler transformations of certain hypergeometric functions. Duke Math. J. 30 (1963), 5162.
(2)Al-Salam, W. A.The Bessel polynomials. Duke Math. J. 24 (1957), 529547.
(3)Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G.Higher transcendental functions, vol. I (McGraw-Hill; New York, 1953).
(4)Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G.Higher transcendental functions, vol. II (McGraw-Hill; New York, 1953).
(5)Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G.Higher transcendental functions, vol. II (McGraw-Hill; New York, 1955).
(6)Krall, H. L. and Frink, O.A new class of orthogonal polynomials: the Bessel polynomials. Trans. Amer. Math. Soc. 65 (1949), 100115.
(7)Rainville, E. D.Special functions (Macmillan; New York, 1960).
(8)Singh, R. P.A note on double transformations of certain hypergeometric functions. Proc. Edinburgh Math. Soc. (2), 14 (1965), 221227.
(9)Slater, L. J.Confluent hypergeometric functions (Cambridge, 1960).
(10)Slater, L. J.Generalized hypergeometric functions (Cambridge, 1966).
(11)Srivastava, H. M.On Bessel, Jacobi and Laguerre polynomials. Rend. Sem. Mat. Univ. Padova. 35 (1965), 424432.
(12)Srivastava, H. M.Some expansions in products of hypergeometric functions. Proc. Cambridge Philos. Soc. 62 (1966), 245247.
(13)Srivastava, H. M.The integration of generalized hypergeometric functions. Proc. Cambridge Philos. Soc. 62 (1966), 761764.
(14)Srivastava, H. M.The products of certain classical polynomials. Math. Japon. 11 (1966), 6776.
(15)Watson, G. N.Theory of Bessel functions (Cambridge, 1944).

Double Meijer transformations of certain hypergeometric functions

  • H. M. Srivastava (a1) and J. P. Singhal (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed