We investigate the structure, growth morphology and the related electro-optical properties of gallium nitride (GaN) films deposited on (0001) sapphire substrates by gas source molecular beam epitaxy (GSMBE) and use transmismission electron microscopy, atomic force microscopy and scanning tunneling microscopy, photoluminescence (PL) and cathodoluminescence (CL). We find two types of specimens: one type which shows a strong UV luminescence (band-to-band transition at 358nm/3.46eV) in CL and PL and only faint yellow luminescence (Gaussian shaped CL/PL peaks at around 528nm/2.35eV), specimen ‘B’, and another type, which shows a strong UV and a comparably strong yellow luminescence, specimen ‘Y’. These two types of specimens have a rough layer surface, specimen ‘Y’ even an islanded one with, facetted hexagonal islands with a width of 1-2μm at a height of 50nm. A correlation of spectrally resolved CL images to the observed defect structure shows: (i) the yellow luminescence is homogeneously distributed over the complete specimen for ‘B’ and ‘Y’ specimens. Our investigations strongly suggest the yellow luminescence to be related to screw dislocations with , which are found randomly distributed in ‘B’ and ‘Y’ specimens with a high density of 1.3·109cm−2; (ii) the strong UV luminescence in ‘Y’ specimens is located in the troughs between adjacent surface islands, where dislocations essentially in small angle grain boundaries of edge type, i.e. with or are located; (iii) in the case of the ‘B’ specimens these dislocations are randomly distributed and so is the luminescence.