Skip to main content Accessibility help
×
Home

Differences in the sexual aposymbiotic phase of the reproductive cycles of Parmelina carporrhizans and P. quercina. Possible implications for their reproductive biology

  • D. ALORS (a1), Y. CENDÓN-FLÓREZ (a2), P. K. DIVAKAR (a1), A. CRESPO (a1), N. GONZÁLEZ.BENÍTEZ (a2) and M. C. MOLINA (a2)...

Abstract

Our knowledge of ontogenetic development and reproductive biology in lichen-forming fungi is rather poor. Here, we aim to advance our understanding of the reproductive biology of Parmelina carporrhizans and P. quercina for which mycobiont fungi of both species were cultured in aposymbiotic conditions from ascospores. For P. carporrhizans 48 hours were necessary for 98·6% of apothecia to eject spores, while for P. quercina 100% of apothecia ejected spores in the first 24 hours. In P. quercina, large apothecia ejected more spores than smaller ones. In both species the percentage of spores germinating seemed independent of apothecium size. The percentage germination was higher in P. carporrhizans (72·4%) than in P. quercina (14·3%). Moreover, P. carporrhizans was grown more successfully on culture media than P. quercina. These results suggest that these species have different reproductive strategies, given that P. carporrhizans expels larger spores and in greater numbers than P. quercina as well as having different nutritional requirements (since P. carporrhizans grew successfully in the selected media but P. quercina did not). These characteristics may explain the sympatric speciation of these species.

Copyright

References

Hide All
Ahmadjian, V. (1993) The Lichen Symbiosis. New York: John Wiley & Sons, Inc.
Alors, D., Dal Grande, F., Schmitt, I., Kraichak, E., Lumbsch, H. T., Crespo, A. & Divakar, P. K. (2014) Characterization of fungus-specific microsatellite markers in the lichen-forming fungus Parmelina carporrhizans (Parmeliaceae). Applications in Plant Sciences 2: 1400081.
Alors, D., Dal Grande, F., Cubas, P., Crespo, A., Schmitt, I., Molina, M. C. & Divakar, P. K. (2017) Panmixia and dispersal from the Mediterranean Basin to Macaronesian Islands of a macrolichen species. Scientific Reports 7: 40879.
Argüello, A., del Prado, R., Cubas, P. & Crespo, A. (2007) Parmelina quercina (Parmeliaceae, Lecanorales) includes four phylogenetically supported morphospecies. Biological Journal of the Linnean Society 91: 445467.
Armaleo, D. (1991) Experimental microbiology of lichens: mycelial fragmentation, a novel growth chamber, and the origins of thallus differentiation. Symbiosis 11: 163178.
Barton, K. (2013) MuMin: Multi-Model inference model selection and model averaging based on information criteria (AICc and alike). R package version 1.15.6.
Beck, A., Divakar, P. K., Zhang, N., Molina, M. C. & Struwe, L. (2015) Evidence of ancient horizontal gene transfer between fungi and the terrestrial alga Trebouxia. Organisms Diversity and Evolution 15: 235248.
Brunauer, G. & Stocker-Wörgötter, E. (2005) Culture of lichen fungi for future production of biologically active compounds. Symbiosis 38: 187201.
Brunauer, G., Hager, A., Grube, M., Türk, R. & Stocker-Wörgötter, E. (2007) Alterations in secondary metabolism of aposymbiotically grown mycobionts of Xanthoria elegans and cultured resynthesis stages. Plant Physiology and Biochemistry 45: 146151.
Burnham, K. P. & Anderson, D. R. (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York: Springer-Verlag.
Clerc, P. & Truong, C. (2008) The non-sorediate and non-isidiate Parmelina species (lichenized ascomycetes, Parmeliaceae) in Switzerland – Parmelina atricha (Nyl.) P. Clerc reinstated in the European lichen flora. Sauteria 15: 175194.
Cordeiro, L. M. C., Iacomini, M. & Stocker-Wörgötter, E. (2004) Culture studies and secondary compounds of six Ramalina species. Mycological Research 108: 489497.
Dal Grande, F., Alors, D., Divakar, P. K., Bálint, M., Crespo, A. & Schmitt, I. (2014) Insights into intrathalline genetic diversity of the cosmopolitan lichen symbiotic green alga Trebouxia decolorans Ahmadjian using microsatellite markers. Molecular Phylogenetics and Evolution 72: 5460.
Deason, D. R. & Bold, H. C. (1960) Phycological studies. I. Exploratory studies of Texas soil algae. University of Texas Publications 6022: 170.
Deduke, C. & Piercey-Normore, M. D. (2015) Substratum preference of two species of Xanthoparmelia. Fungal Biology 119: 812822.
Degtjarenko, P., Marmor, L., Torra, T., Lerch, M., Saag, A., Randlane, T. & Scheidegger, C. (2016) Impact of alkaline dust pollution on genetic variation of Usnea subfloridana populations. Fungal Biology 120: 11651174.
Easton, L. C. & Kleindorfer, S. (2008 a) Germination in two Australian species of Frankenia L., F. serpyllifolia Lindl. and F. foliosa J. M. Black (Frankeniaceae) – effect of seed age, seed mass, light, and temperature. Transactions of the Royal Society of South Australia 132: 2940.
Easton, L. C. & Kleindorfer, S. (2008 b) Interaction effects of seed mass and temperature on germination in Australian species of Frankenia (Frankeniaceae). Folia Geobotanica 43: 383396.
Eaton, S., Zúñiga, C., Czyzewski, J., Ellis, C., Genney, D. R., Haydon, D., Mirzai, N. & Yahr, R. A. (2018) A method for the direct detection of airborne dispersal in lichens. Molecular Ecology Resources 18: 240250.
Fedrowitz, K., Kuusinen, M. & Snäll, T. (2012) Metapopulation dynamics and future persistence of epiphytic cyanolichens in a European boreal forest ecosystem. Journal of Applied Ecology 49: 493502.
Hawksworth, D. L., Blanco, O., Divakar, P. K., Ahti, T. & Crespo, A. (2008) A first checklist of parmelioid and similar lichens in Europe and some adjacent territories, adopting revised generic circumscriptions and with indications of species distributions. Lichenologist 40: 121.
Honegger, R. & Zippler, U. (2007) Mating systems in representatives of Parmeliaceae, Ramalinaceae and Physciaceae (Lecanoromycetes, lichen-forming ascomycetes). Mycological Research 111: 424432.
Johansson, P., Rydin, H. & Thor, G. (2007) Tree age relationships with epiphytic lichen diversity and lichen life history traits on ash in southern Sweden. Ecoscience 14: 8191.
Johnson, J. B. & Omland, K. S. (2004) Model selection in ecology and evolution. Trends in Ecology and Evolution 19: 101108.
Lallemant, R. (1985) Le développement en cultures pures in vitro des mycosymbiotes des lichens. Canadian Journal of Botany 63: 681703.
Lilly, V. G. & Barnett, H. L. (1951) Physiology of the Fungi. New York: McGraw-Hill.
Marshall, W. A. (1996) Aerial dispersal of lichen soredia in the maritime Antarctic. New Phytologist 134: 523530.
McDonald, T. R., Dietrich, F. S. & Lutzoni, F. (2012) Multiple horizontal gene transfers of ammonium transporters/ammonia permeases from prokaryotes to eukaryotes: toward a new functional and evolutionary classification. Molecular Biology and Evolution 29: 5160.
Molina, M. C. & Crespo, A. (2000) Comparison of development of axenic cultures of five species of lichen-forming fungi. Mycological Research 103: 595602.
Molina, M. C., Stocker-Wörgötter, E., Türk, R. & Vicente, C. (1997) Axenic culture of the mycobiont of Xanthoria parietina in different nutritive media: effect of carbon source in spore germination. Endocytobiosis and Cell Research 12: 103109.
Molina, M. C., Crespo, A., Blanco, O. & Hawksworth, D. L. (2002) Molecular phylogeny and status of Diploicia and Diplotomma, with observations on Diploicia subcanescens and Diplotomma rivas-martinezii. Lichenologist 34: 509519.
Molina, M. C., Divakar, P. K., Zhang, N., González, N. & Struwe, L. (2013) Non-developing ascospores found in apothecia of asexually reproducing lichen-forming fungi. International Microbiology 16: 145155.
Molina, M. C., Divakar, P. K. & González, N. (2015) Success in the isolation and axenic culture of Anaptychia ciliaris (Physciaceae, Lecanoromycetes) mycobiont. Mycoscience 56: 351358.
Morando, M., Favero-Longo, S. E., Carrer, M., Matteucci, E., Nascimbene, J., Sandrone, S., Appolonia, L. & Piervittori, R. (2017) Dispersal patterns of meiospores shape population spatial structure of saxicolous lichens. Lichenologist 49: 397413.
Nimis, P. L. (1993) The Lichens of Italy: An Annotated Catalogue. Torino: Museo Regionale di Scienze Naturali.
Núñez-Zapata, J., Divakar, P., Del-Prado, R., Cubas, P., Hawksworth, D. L. & Crespo, A. (2011) Conundrums in species concepts: the discovery of a new cryptic species segregated from Parmelina tiliacea (Ascomycota: Parmeliaceae). Lichenologist 43: 603616.
Núñez-Zapata, J., Alors, D., Cubas, P., Divakar, P. K., Leavitt, S. D., Lumbsch, H. T. & Crespo, A. (2017) Understanding disjunct distribution patterns in lichen-forming fungi: insights from Parmelina (Parmeliaceae, Ascomycota). Botanical Journal of the Linnean Society 184: 238253.
Öckinger, E., Niklasson, M. & Nilsson, S. G. (2005) Is local distribution of the epiphytic lichen Lobaria pulmonaria limited by dispersal capacity or habitat quality? Biodiversity and Conservation 14: 759773.
Ott, S. (1987) Sexual reproduction and developmental adaptations in Xanthoria parietina. Nordic Journal of Botany 7: 219228.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team (2016) nlme: linear and nonlinear mixed effects models. R package version 3.1–128.
R Development Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http:// www.R-project.org.
Sanders, W. B. (2014) Complete life cycle of the lichen fungus Calopadia puiggari (Pilocarpaceae, Ascomycetes) documented in situ: propagule dispersal, establishment of symbiosis, thallus development, and formation of sexual and asexual reproductive structures. American Journal of Botany 101: 18361848.
Sanders, W. B. & Lücking, R. (2002) Reproductive strategies, relichenization and thallus development observed in situ in leaf-dwelling lichen communities. New Phytologist 155: 425435.
Sangvichien, E., Hawksworth, D. L. & Whalley, A. J. S. (2011) Ascospore discharge, germination and culture of fungal partners of tropical lichens, including the use of a novel culture technique. IMA Fungus 2: 143153.
Schauer, T. (1965) Ozeanische flechten in Nordalpenraum. Portugaliae Acta Biologica (B) 8: 17229.
Schielzeth, H. & Nakagawa, S. (2012) Nested by design: model fitting and interpretation in a mixed model era. Methods in Ecology and Evolution 4: 1424.
Schuster, G., Ott, S. & Jahns, H. M. (1985) Artificial cultures of lichens in the natural environment. Lichenologist 17: 247253.
Shanmugam, K., Srinivasan, M. & Hariharan, G. N. (2016) Developmental stages and secondary compound biosynthesis of mycobiont and whole thallus cultures of Buellia subsororioides. Mycological Progress 15: 41.
Tibell, L. B. (1994) Distribution patterns and dispersal strategies of Caliciales. Botanical Journal of the Linnean Society 116: 159202.
Westoby, M., Falster, D., Moles, A., Vesk, P. & Wright, I. (2002) Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33: 125159.
Yamamoto, Y., Kinoshita, Y., Takahagi, T., Kroken, S., Kurokawa, T. & Yoshimura, I. (1998) Factors affecting discharge and germination of lichen ascospores. Journal of the Hattori Botanical Laboratory 85: 267278.

Keywords

Differences in the sexual aposymbiotic phase of the reproductive cycles of Parmelina carporrhizans and P. quercina. Possible implications for their reproductive biology

  • D. ALORS (a1), Y. CENDÓN-FLÓREZ (a2), P. K. DIVAKAR (a1), A. CRESPO (a1), N. GONZÁLEZ.BENÍTEZ (a2) and M. C. MOLINA (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed