Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T05:54:49.869Z Has data issue: false hasContentIssue false

Morphometric methods in determination of ammonite species, exemplified through Balatonites shells (Middle Triassic)

Published online by Cambridge University Press:  20 May 2016

J. Hohenegger
Affiliation:
Institut für Paläontologie, Universität Wien, Universitätsstraße 7, A-1010 Wien, Austria
F. Tatzreiter
Affiliation:
Geologisch-Paläontologische Abteilung, Naturhistorisches Museum Wien, Burgring 7, A-1014 Wien, Austria

Abstract

Specimens of the ammonite genus Balatonites from the Middle Triassic of Austria and Hungary are analyzed morphometrically to obtain growth invariant character states. A new method transforming growth dependent qualitative characters into age invariant metric variables is developed. Weighted standardization as a method preserving univariate discriminatory efficiency is applied to character states preceding numerical classification procedures, resulting in a clearer separation of homogeneous groups in comparison to simple standardized data. All clustering and ordination procedures produce two identical classes, which are interpreted according to the cohesion concept as distinct biological species. In adherence to the taxonomic rules they are denominated as Balatonites egregius Arthaber and Balatonites balatonicus (Mojsisovics).

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthaber, G. v. 1896. Die Cephalopodenfauna der Reiflinger Kalke. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, 10, I. Abteilung:1-112, II. Abteilung:192242.Google Scholar
Batschelet, E. 1971. Introduction to Mathematics for Life Scientists. Springer Verlag, Berlin, Heidelberg, and New York, 495 p.Google Scholar
Bayer, U. 1978. Morphogenetic programs, instabilities, and evolution—a theoretical study. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 156:226261.Google Scholar
Checa, A. 1987. Morphogenesis in ammonites—differences linked to growth pattern. Lethaia, 20:141148.Google Scholar
Cook, R. D., and Weisberg, S. 1982. Residuals and Influence in Regression. Chapman and Hall, London, 230 p.Google Scholar
Cracraft, J. 1989. Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation, p. 2859. In Otte, D. and Endler, J. A. (eds.), Speciation and its Consequences. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Crow, J. F. 1986. Basic Concepts in Population, Quantitative and Evolutionary Genetics. Freeman, New York, 273 p.Google Scholar
David, H. A. 1970. Order Statistics. John Wiley and Sons, New York, 272 p.Google Scholar
Dillon, W. R., and Goldstein, M. 1984. Multivariate Analysis. Methods and Applications. John Wiley and Sons, New York, 587 p.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism, p. 82115. In Schopf, T. J. M. (ed.), Models in Paleobiology. Freeman, Cooper and Company, San Francisco.Google Scholar
Endler, J. A. 1989. Conceptual and other problems in speciation, p. 625648. In Otte, D. and Endler, J. A. (eds.), Speciation and its Consequences. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Fisher, R. A. 1938. The statistical utilization of multiple measurements. Annals of Eugenics, 8:376386.Google Scholar
Futuyma, D. 1986. Evolutionary Biology. Sinauer Associates, Sunderland, Massachusetts, 600 p.Google Scholar
Geyssant, J. R. 1979. Evolution, systématique et dimorphisme d'un nouveau genre d'Ammonite: Baeticoceras (Ammonitina, Simoceratinae) dans le Tithonique Supérieur des Cordilleres Betiques (Espagne). Palaeontographica Abt. A, 166:136.Google Scholar
Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53:325338.Google Scholar
Hohenegger, J. 1982. Numerische Klassifikation von Individuen und Merkmalsnormierung. Sitzungsberichte der Österreichischen Akademie der Wissenschaften, Mathem.-naturw. Kl., Abt.I, 191:1572.Google Scholar
Hohenegger, J. 1986. Weighted standardization—a general data transformation method preceding classification procedures. Biometrical Journal, 28:295303.Google Scholar
Hohenegger, J. 1989. Klassifikation von Organismen und das “Natürliche System.” Sitzungsberichte der Österreichischen Akademie der Wissenschaften, Mathem.-naturw. Kl., Abt.I, 197:35181.Google Scholar
Hotelling, H. 1936. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24:417441.Google Scholar
Johnson, N. L., and Kotz, S. 1970. Continuous Univariate Distributions. 1. Houghton Mifflin, Boston, Massachusetts, 300 p.Google Scholar
Jolicoeur, P. 1963. The degree of robustness in Martes americana. Growth, 27:127.Google Scholar
Kant, R., and Kullmann, J. 1988. Changes in the conch form in the Paleozoic ammonoids, p. 4349. In Wiedmann, J. and Kullmann, J. (eds.), Cephalopods. Present and Past. Schweizerbart, Stuttgart.Google Scholar
Kaufmann, E. G. 1978. Benthic environments and paleoecology of the Posidonienschiefer (Toarcien), p. 1836. In Seilacher, A. and Westphal, F. (eds.), Paleoecology. Constructions, Sedimentology, Diagenesis and Association of Fossils. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 157.Google Scholar
Kruskal, J. B. 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29:115131.Google Scholar
Kullmann, J., and Scheuch, J. 1970. Wachstumsänderungen in der Ontogenese paläozoischer Ammonoideen. Lethaia, 3:397412.CrossRefGoogle Scholar
MacQueen, J. 1967. Some methods for classification and analysis of multivariate observations. 5th Berkeley Symposion on Mathematics, Statistics, and Probability, 1:281298.Google Scholar
Maynard Smith, J. 1989. Evolutionary Genetics. Oxford University Press, Oxford, 325 p.Google Scholar
Mayr, E. 1963. Animal Species and Evolution. Belknap Press, Cambridge, Massachusetts, 797 p.Google Scholar
Mojsisovics, E. v. 1873. Über einige Trias-Versteinerungen aus den Süd-Alpen. Jahrbuch der Geologischen Reichsanstalt Wien, 23:425438.Google Scholar
Orloci, L. 1967. An agglomerative method for classification of plant communities. Journal of Ecology, 55:193206.Google Scholar
Paterson, H. E. H. 1985. The recognition concept of species, p. 2129. In Vrba, E. S. (ed.), Species and Speciation. Transvaal Museum Monograph No. 4, Pretoria.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology, 40:11781190.Google Scholar
Reyment, R. A. 1980. Variation and ontogeny in Bauchioceras and Gomboeceras. Bulletin of the Geological Institutions of the University of Uppsala, New Series, 8:89112.Google Scholar
Reyment, R. A. 1991. Multidimensional Palaeobiology. Pergamon Press, Oxford, 377 p.Google Scholar
Reyment, R. A., and Sandberg, P. 1963. Biometric study on Barremites subdifficilis (Karakasch). Palaeontology, 6:727730.Google Scholar
Shepard, R. N. 1962. The analysis of proximities: multidimensional scaling with an unknown distance function. I and II. Psychometrika, 27:125139, 219–246.Google Scholar
Simpson, G. G. 1951. The species concept. Evolution, 5:285298.Google Scholar
Sneath, P. H. A., and Sokal, R. R. 1973. Numerical Taxonomy. Freeman and Company, San Francisco, 573 p.Google Scholar
Summesberger, H., and Wagner, L. 1972. Der Stratotypus des Anis (Trias). Annalen des Naturhistorischen Museums Wien, 76:515538.Google Scholar
Templeton, A. R. 1989. The meaning of species and speciation, p. 327. In Otte, D. and Endler, J. A. (eds.), Speciation and its Consequences. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Torgerson, W. S. 1952. Multidimensional scaling: theory and method. Psychometrika, 17:401419.Google Scholar
Vörös, A. 1987. Preliminary results from Aszófö section (Middle Triassic, Balaton area, Hungary): a proposal for a new Anisian ammonoid subzonal scheme. Fragmenta Mineralogica et Paleontologica, 13:5364.Google Scholar
Ward, J. H. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58:236244.Google Scholar
Wiley, E. O. 1981. Phylogenetics. The Theory and Practice of Phylogenetic Systematics. John Wiley and Sons, New York, 439 p.Google Scholar