Skip to main content Accessibility help

Optimized hyper beamforming of receiving linear antenna arrays using Firefly algorithm

  • Gopi Ram (a1), Durbadal Mandal (a1), Rajib Kar (a1) and Sakti Prasad Ghoshal (a2)


In this paper, an optimized hyper beamforming method is presented based on a hyper beam exponent parameter for receiving linear antenna arrays using a new meta-heuristic search method based on the Firefly algorithm (FFA). A hyper beam is derived from the sum and difference beam patterns of the array, each raised to the power of a hyper beam exponent parameter. As compared to the conventional hyper beamforming of the linear antenna array, FFA applied to the hyper beam of the same array can achieve much more reduction in sidelobe level (SLL) and improved first null beam width (FNBW), keeping the same value of the hyper beam exponent. As compared to the uniformly excited linear antenna array with inter-element spacing of λ/2, conventional non-optimized hyper beamforming and optimal hyper beamforming of the same obtained by real-coded genetic algorithm, particle swarm optimization and Differential evolution, FFA applied to the hyper beam of the same array can achieve much greater reduction in SLL and same or less FNBW, keeping the same value of the hyper beam exponent parameter. The whole experiment has been performed for 10-, 14-, and 20-element linear antenna arrays.


Corresponding author

Corresponding author: D. Mandal Email:


Hide All
[1]Schlieter, H.; Eigenbrod, H.: Method for the formation of radiated beams in direction finder systems, Patent US 6021096 A, February 1, 2000.
[2]Anita, V.; Sri Jaya Lakshmi, S.; Sreedevi, I.; Khan, H.; Sarat Kumar, K.; Ramakrishna, P.: An adaptive processing of linear array for target detection improve. Int. J. Comput. Appl. (0975–8887), 42 (4) (2012), 3336.
[3]Isernia, T.; Ares Pena, F.J.; Bucci, O.M.; Durso, M.; Gomez, J.F.; Rodriguez, J.A.: A hybrid approach for the optimal synthesis of pencil beams through array antennas. IEEE Trans. Antennas Propag., 52 (11) (2004), 29122918.
[4]Walkar, R.S.: Bearing accuracy and resolution bound of high-resolution beam formers, in Proc. IEEE ICASSP ‘85, Tampa, FL.
[5]Takao, K.; Komiyama, K.: An adaptive antenna array under directional constraint. IEEE Trans. Antennas Propag., AI 24 (1976), 662669.
[6]Schilter, H.: Method for three-dimensional beam forming in direction finding systems, Patent US 6178140, January 23, 2001.
[7]Balanis, C.A.: Antenna Theory Analysis and Design. John Wiley & Sons, New York, 1997.
[8]Krous, J.D.: Antenna. Mc GRAW-HILL, New York, 1950.
[9]Mailloux, R.J.: Phased array architecture for millimetric active arrays, IEEE Antennas Propag. Soc. Newslett., February 1986, 28, 47.
[10]Schrank, H.E.: Low sidelobe phased array antennas. IEEE Antennas Propag. Soc. Newslett., 25 (2) (1983), 49.
[11]Applebaum, S.P.; Chapman, D.J.: Adaptive arrays with main beam constraints. IEEE Trans. Antennas Propag., AI-24 (1976), 650662.
[12]Chen, S.: IIR model identification using batch-recursive adaptive simulated annealing algorithm, in 6th Annual Chinese Automation and Computer Science Conf., 2000, 151155.
[13]Haupt, R.L.: Phase-only adaptive nulling with a genetic algorithm. IEEE Trans. Antennas Propag., 45 (6) (1997), 10091015.
[14]Haupt, R.L.; Werner, D.H.: Genetic Algorithms in Electromagnetics. IEEE Press, Wiley–Interscience, John Wiley & Sons, Inc., Publication, USA, 2007.
[15]Chung, Y.C.; Haupt, R.L.: Adaptive nulling with spherical arrays using a genetic algorithm. Proc. IEEE AP-S Int. Symp. Digest, 3 (1999), 20002003.
[16]Hardel, G.R.; Yalapragada, N.T.; Mandal, D.; Bhattacharjee, A.K.: Introducing dipper nulls in time modulated linear symmetric antenna array using real coded genetic algorithm, in Symp. Computers and Informatics, March 2011, 249254.
[17]Eberhart, R.; Shi, Y.: Comparison between genetic algorithm and particle swarm optimization, in Evolutionary Programming VII, Springer, 1998, 611616.
[18]Kennedy, J.; Eberhart, R.: Particle swarm optimization, in Proc. IEEE Int. Conf. Neural Network, vol. 4, 1995, 19421948.
[19]Mandal, D.; Yallaparagada, N.T.; Ghoshal, S.P.; Bhattacharjee, A.K.: Wide null control of linear antenna arrays using particle swarm optimization, in IEEE INDICON, Kolkata, India, December 2010, 14.
[20]Hao, Z.F.; Guo, G.H.; Huang, H.: A particle swarm optimization algorithm with differential evolution, in Int. Conf. Machine Learning and Cybernetics, vol. 2 (2007), 10311035.
[21]Luitel, B.; Venayagamoorthy, G.K.: Differential evolution particle swarm optimization for digital filter design, in IEEE Congress on Evolutionary Computation, CEC, 2008, 39543961.
[22]Eberhart, R.C.; Shi, Y.: Particle swarm optimization: developments, applications and resources, evolutionary computation, in Proc. Congress on Evolutionary Computation, 2001, 8186.
[23]Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput., 10 (3) (2006), 281295.
[24]Luitel, B.; Venayagamoorthy, G.K.: Particle swarm optimization with quantum infusion for system identification. Eng. Appl. Artif. Intell., 23 (2010), 635649.
[25]Panda, G.; Mohanty, D.; Majhi, B.; Sahoo, G.: Identification of nonlinear systems using particle swarm optimization technique, in IEEE Congress on Evolutionary Computation, 2007, 32533257.
[26]Durmus, B.; Gun, A.: Parameter identification using particle swarm optimization, in 6th Int. Advanced Technologies Symp., IATS'11, Turkey, May 2011, 188192.
[27]Van den Bergh, F.; Engelbrecht, A.P.: Cooperative learning in neural network using particle swarm optimizers. South African Comput. J., 26 (2000), 8490.
[28]Storn, R.; Price, K.: Differential evolution- a simple and efficient adaptive scheme for global optimization over continuous spaces, Technical Report, International Computer Science Institute, Berkley, TR-95-012, 1995.
[29]Storn, R.; Price, K.V.: Minimizing the real functions of the ICEC 1996 contest by differential evolution, in Proc. 1996 IEEE Int. Conf. Evolutionary Computation, Nagoya, Japan, IEEE Press, New York, 1996, 842844.
[30]Price, K.; Storn, R.; Lampinen, J.: Differential evolution – A Practical Approach to Global Optimization. Springer, Berlin, 2005.
[31]Das, S.; Mandal, D.; Kar, R.; Ghoshal, S.P.: Application of differential evolution with best of random mutation strategy on asymetric location only synthesis of broadside circular antenna array, in SEMCCO 2012, Bhubaneswar, Odisha, India, December 2012.
[32]Liu, J.; Lampinen, J.; Matousek, R.; Osmera, P.: Adaptive parameter control of differential evolution, in Proc. Mendel, 8-th Int. Conf. Soft Computing, 2002, 1926.
[33]Lin, C.; Quing, A.: Synthesis of unequally spaced antenna arrays by a new differential evolution algorithm. Int. J. Commun. Netw. Inf. Secur. (IJCNIS), 1 (1) (2009), 2025.
[34]Roscca, P.; Oliveri, G.; Massa, A.: Differential evolution as applied to electromagnetics. IEEE Antennas Propag. Mag., 53 (1) (2011), 3849.
[35]Kurup, D.G.; Himdi, M.; Rydberg, A.: Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm. IEEE Trans. Antennas Propag., 51 (9) (2003), 22102217.
[36]Lin, C.; Qing, A.; Feng, Q.: Synthesis of unequally spaced antenna arrays by using differential evolution. IEEE Trans. Antennas Propag., 58 (2010), 25532561.
[37]Zhang, X.; Liu, S.: Differential evolution without the scale factor F. Acta Eelctron. Sin., 36 (2009), 13181323.
[38]Qin, A.K.; Huang, V.L.; Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput., 13 (2) (2009), 398417.
[39]Mandal, S.; Ghoshal, S.P.; Kar, R.; Mandal, D.: Differential evolution with wavelet mutation in digital FIR filter design. J. Optim. Theory Appl., 155 (1) (2012), 315324.
[40]Yang, X.S.: Firefly algorithms for multimodal optimization, In Proc. 5th Int. Conf. Stochastic Algorithms: Foundations and Applications, SAGA 2009, LNCS-Springer, vol. 5792, 2009, 169178.
[41]Basu, B.; Mahanti, G.K.: Firefly and artificial bees colony algorithm for synthesis of scanned and broadside linear array antenna. Prog. Electromagn. Res. B, 32 (2011), 169190.
[42]Yang, X.S.; Hosseini, S.S.; Gandomi, A.H.: Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl. Soft Comput., 12 (3) (2012), 11801186.
[43]Yang, X.S.; Deb, S.: Eagle strategy using Levy walk and firefly algorithms for stochastic optimization, Nature Inspired Cooperative Strategies for Optimization (NICSO). Stud. Comput. Intell., 284 (2010), 101111.
[44]Yang, X.S.: Multiobjective firefly algorithm for continuous optimization. Eng. Comput., 29 (2) (2013), 175184.


Related content

Powered by UNSILO

Optimized hyper beamforming of receiving linear antenna arrays using Firefly algorithm

  • Gopi Ram (a1), Durbadal Mandal (a1), Rajib Kar (a1) and Sakti Prasad Ghoshal (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.