Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-11T12:09:37.607Z Has data issue: false hasContentIssue false

Optimization of a wideband antipodal Vivaldi antenna with metalenses

Published online by Cambridge University Press:  05 October 2023

Antonella Maria Loconsole
Affiliation:
Department of Electrical and Information Engineering, Politecnico di Bari, Bari (BA), Italy
Vincenza Portosi
Affiliation:
Department of Electrical and Information Engineering, Politecnico di Bari, Bari (BA), Italy
Vito Vincenzo Francione
Affiliation:
Department of Electrical and Information Engineering, Politecnico di Bari, Bari (BA), Italy
Francesco Anelli
Affiliation:
Department of Electrical and Information Engineering, Politecnico di Bari, Bari (BA), Italy
Andrea Annunziato
Affiliation:
Department of Electrical and Information Engineering, Politecnico di Bari, Bari (BA), Italy
Mario Christian Falconi
Affiliation:
Department of Electrical and Information Engineering, Politecnico di Bari, Bari (BA), Italy
Francesco Prudenzano*
Affiliation:
Department of Electrical and Information Engineering, Politecnico di Bari, Bari (BA), Italy
*
Corresponding author: Francesco Prudenzano; Email: francesco.prudenzano@poliba.it

Abstract

A wideband antipodal Vivaldi antenna has been designed and optimized. A slight improvement is obtained by employing multiple metalense based on circular split-ring resonators to maximize the antenna gain with the maximum bandwidth. The designed antennas have been fabricated and characterized, showing good agreement with simulations. The maximum measured gain is $G = 12\;{\textrm{dB}}$, and the −10 dB bandwidth is from $f = 3\;{\textrm{GHz}}$ to $f = 13\;{\textrm{GHz}}$.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Loconsole, AM, Portosi, V, Francione, VV, Roberto, G, Anelli, F and Prudenzano, F (2022) Wideband antipodal Vivaldi antenna with metalenses for GPR applications. In 2022 Microwave Mediterranean Symposium (MMS), Pizzo, Italy.Google Scholar
Natarajan, R, George, JV, Kanagasabai, M and Kumar Shrivastav, A (2015) A compact antipodal Vivaldi antenna for UWB applications. IEEE Antennas and Wireless Propagation Letters 14, 15571560.CrossRefGoogle Scholar
Hood, AZ, Karacolak, T and Topsakal, E (2008) A small antipodal Vivaldi antenna for ultrawide-band applications. IEEE Antennas and Wireless Propagation Letters 7, 656660.CrossRefGoogle Scholar
Fei, P, Jiao, Y-C, Hu, W and Zhang, F-S (2011) A miniaturized antipodal Vivaldi antenna with improved radiation characteristics. IEEE Antennas and Wireless Propagation Letters 10, 127130.Google Scholar
Gjokaj, V, Papapolymerou, J, Albrecht, JD, Wright, B and Chahal, P (2020) A compact receive module in 3-D printed Vivaldi antenna. IEEE Transactions on Components, Packaging, and Manufacturing Technology 10, 343346.CrossRefGoogle Scholar
De Oliveira, AM, Perotoni, MB, Kofuji, ST and Justo, JF (2015) A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern. IEEE Antennas and Wireless Propagation Letters 14, 13341337.CrossRefGoogle Scholar
Puskely, J, Lacik, J, Raida, Z and Arthaber, H (2016) High-gain dielectric-loaded Vivaldi antenna for Ka-band applications. IEEE Antennas and Wireless Propagation Letters 15, 20042007.CrossRefGoogle Scholar
Shi, X, Cao, Y, Hu, Y, Luo, X, Yang, H and Ye, LH (2021) A high-gain antipodal Vivaldi antenna with director and metamaterial at 1–28 GHz. IEEE Antennas and Wireless Propagation Letters 20, 24322436.CrossRefGoogle Scholar
Portosi, V, Loconsole, AM and Prudenzano, F (2020) A split ring resonator-based metamaterial for microwave impedance matching with biological tissue. Applied Sciences 10, .CrossRefGoogle Scholar
Caloz, C and Itoh, T (2006) Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Hoboken, NJ: Wiley & IEEE Press.Google Scholar
Mustacchio, C, Boccia, L, Arnieri, E and Amendola, G (2021) A gain levelling technique for on-chip antennas based on split-ring resonators. IEEE Access 9, 9075090756.CrossRefGoogle Scholar
Portosi, V, Loconsole, AM, Valori, M, Marrocco, V, Bonelli, F, Pascazio, G, Lampignano, V, Fasano, A and Prudenzano, F (2022) Refinement of a microwave needle applicator for cancer therapy via metamaterials. In 2022 Microwave Mediterranean Symposium (MMS), Pizzo, Italy.CrossRefGoogle Scholar
Attivissimo, F, Lanzolla, AML, Carlone, S, Larizza, P and Brunetti, G (2018) A novel electromagnetic tracking system for surgery navigation. Computer Assisted Surgery 23, 4252.CrossRefGoogle ScholarPubMed
Smith, DR, Vier, DC, Koschny, T and Soukoulis, CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E 71, .CrossRefGoogle ScholarPubMed
Szabo, Z, Park, G-H, Hedge, R and Li, E-P (2010) A unique extraction of metamaterial parameters based on Kramers–Kronig relationship. IEEE Transactions on Microwave Theory and Techniques 58, 26462653.CrossRefGoogle Scholar
Li, X, Zhou, H, Gao, Z, Wang, H and Lv, G (2017) Metamaterial slabs covered UWB antipodal Vivaldi antenna. IEEE Antennas and Wireless Propagation Letters 16, 29432946.CrossRefGoogle Scholar
Chen, L, Lei, Z, Yang, R, Fan, J and Shi, X (2015) A broadband artificial material for gain enhancement of antipodal tapered slot antenna. IEEE Transactions on Antennas and Propagation 63, 395400.CrossRefGoogle Scholar