Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-23T16:19:18.387Z Has data issue: false hasContentIssue false

Metal-rimmed eight-element tri-band multiple-input multiple-output system with high efficiency for modern 5G smartphones

Published online by Cambridge University Press:  06 June 2023

Vishakha Thakur
Affiliation:
Department of Electronics and Communication, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
Naveen Jaglan*
Affiliation:
Department of Electronics and Communication, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
*
Corresponding author: Naveen Jaglan; Email: naveenjaglan1@gmail.com

Abstract

For future fifth-generation (5G) smartphones, a high-efficiency multiple-input/multiple-output (MIMO) antenna system capable of operating in Long Term Evolution (LTE) 42/43/46 is suggested. A pair of small microstrip-fed slot antenna and inverted F antenna is part of the single antenna design structure. They are positioned on the longer side of the FR-4 printed circuit board. In an effort to lessen the mutual coupling, two antenna elements have a U-shaped rectangular slot inserted between them. The detailed study of the suggested MIMO system includes measurement of the reflection parameter, analyzing the radiation performance, performing envelope correlation coefficient (ECC) and channel capacity calculations, and analyses of the effects of user’s hand in the vicinity of the antenna array. Simulation and measurement results demonstrate the required performance of the proposed design, that is, greater than 80% of total efficiency, isolation >12 dB, and ECC <0.15. The suggested antenna has the benefits of multiband operation, high efficiency, good isolation, and a small footprint.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Guo, QX, Mittra, R, Lei, F, Li, Z, Ju, J and Byun, J (2013) Interaction between internal antenna and external antenna of mobile phone and hand effect. IEEE Transactions on Antennas and Propagation 61(2), 862870.Google Scholar
Aziz, RS, Arya, AK and Park, SO (2016) Multiband full-metal-rimmed antenna design for smartphones. IEEE Antennas and Wireless Propagation Letters 15, 19871990.Google Scholar
Chen, Q, Lin, H, Wang, J, Ge, J, Li, Y and Pei, T (2019) Single ring slot-based antennas for metal-rimmed 4G/5G smartphones. IEEE Transactions on Antennas and Propagation 67(3), 14761487.CrossRefGoogle Scholar
Lian, JW, Ban, YL, Yang, YL, Zhang, LW, Sim, CYD and Kang, K (2016) Hybrid multi-mode narrow-frame antenna for WWAN/LTE metal-rimmed smartphone applications. IEEE Access 4, 39913998.CrossRefGoogle Scholar
Ban, YL, Qiang, YF, Chen, Z, Kang, K and Guo, JH (2015) A dual-loop antenna design for hepta-band WWAN/LTE metal-rimmed smartphone applications. IEEE Transactions on Antennas and Propagation 63(1), 4858.Google Scholar
Deng, C, Feng, Z and Hum, SV (2016) MIMO mobile handset antenna merging characteristic modes for increased bandwidth. IEEE Transactions on Antennas and Propagation 64(7), 26602667.CrossRefGoogle Scholar
Deng, C, Xu, Z, Ren, A and Hum, SV (2019) TCM-based bezel antenna design with small ground clearance for mobile terminals. IEEE Transactions on Antennas and Propagation 67(2), 745754.CrossRefGoogle Scholar
Wang, Y and Du, Z (2016) Wideband monopole antenna with less nonground portion for octa-band WWAN/LTE mobile phones. IEEE Transactions on Antennas and Propagation 64(1), 383388.Google Scholar
Zhang, LW, Ban, YL, Sim, CYD, Guo, J and Yu, ZF (2018) Parallel dual-loop antenna for WWAN/LTE metal-rimmed smartphone. IEEE Transactions on Antennas and Propagation 66(3), 12171226.CrossRefGoogle Scholar
Liu, Y, Zhang, J, Ren, A, Wang, H and Sim, CYD (2019) TCM-based hepta-band antenna with small clearance for metal-rimmed mobile phone applications. IEEE Antennas and Wireless Propagation Letters 18(4), 717721.Google Scholar
Choi, J, Hwang, W, You, C, Jung, B and Hong, W (2019) Four-element recongurable coupled loop MIMO antenna featuring LTE full-band operation for metallic-rimmed smartphone. IEEE Transactions on Antennas and Propagation 67(1), 99107.CrossRefGoogle Scholar
Liu, Y, Cui, W, Jia, Y and Ren, A (2020) Hepta-band metal-frame antenna for LTE/WWAN full-screen smartphone. IEEE Antennas and Wireless Propagation Letters 19(7), 12411245.CrossRefGoogle Scholar
Xu, ZQ, Zhou, QQ, Ban, YL and Simon, SA (2018) Hepta-band coupled-fed loop antenna for LTE/WWAN unbroken metal-rimmed smartphone applications. IEEE Antennas and Wireless Propagation Letters 17(2), 311314.Google Scholar
Yang, Y, Zhao, Z, Yang, W, Nie, Z and Liu, QH (2017) Compact multimode monopole antenna for metal-rimmed mobile phones. IEEE Transactions on Antennas and Propagation 65(5), 22972304.Google Scholar
Liu, Y, Zhou, YM, Liu, GF and Gong, SX (2016) Heptaband inverted-F antenna for metal-rimmed mobile phone applications. IEEE Antennas and Wireless Propagation Letters 15, 996999.Google Scholar
Alshamaileh, MH, Alja’afreh, SS and Almajali, E (2019) Nona-band, hybrid antenna for metal-rimmed smartphone applications. IET Microwaves, Antennas & Propagation 13, 24392448.CrossRefGoogle Scholar
Xu, ZQ, Sun, Y, Zhou, QQ, Ban, YL, Li, YX and Ang, SS (2017) Reconfigurable MIMO antenna for integrated-metal-rimmed smartphone applications. IEEE Access 5, 2122321228.CrossRefGoogle Scholar
Zhang, HB, Ban, YL, Qiang, YF, Guo, J and Yu, ZF (2017) Reconfigurable loop antenna with two parasitic grounded strips for WWAN/LTE unbroken-metal-rimmed smartphones. IEEE Access 5, 48534858.CrossRefGoogle Scholar
Ye, Y, Zhao, X and Wang, J (2022) Compact high-isolated MIMO antenna module with chip capacitive decoupler for 5G mobile terminals. IEEE Antennas and Wireless Propagation Letters 21, 928932.CrossRefGoogle Scholar
Elshirkasi, AM, Al-Hadi, AA, Khan, R, Akkaraekthalin, P, Abdelmula, HS, Belghasem, AM, Jebril, AH and Soh, PJ (2022) Numerical analysis of users body effects on a fourteen-element dual-band 5G MIMO mobile terminal antenna. IEEE Access 10, 20832096.CrossRefGoogle Scholar
Kiani, SH, Iqbal, A, Wong, SW, Savci, HS, Alibakhshikenari, M and Dalarsson, M (2022) Multiple elements MIMO antenna system with broadband operation for 5th generation smart phones. IEEE Access 10, 3844638457.CrossRefGoogle Scholar
Hu, W, Chen, Z, Qian, L, Wen, L, Luo, Q, Xu, R, Jiang, W and Gao, S (2022) Wideband back-cover antenna design using dual characteristic modes with high isolation for 5G MIMO smartphone. IEEE Transactions on Antennas and Propagation 70(7), 52545265.CrossRefGoogle Scholar
Chen, L, Huang, Y, Wang, H, Zhou, H and Liu, K (2022) A reconfigurable metal rim antenna with smallest clearance for smartphone applications. IEEE Access 10, 112250112260.CrossRefGoogle Scholar
Zhao, L, Liu, F, Shen, X, Jing, G, Cai, YM and Li, Y (2018) A high-pass antenna interference cancellation chip for mutual coupling reduction of antennas in contiguous frequency bands. IEEE Access 6, 3809738105.CrossRefGoogle Scholar
Liu, F, Guo, J, Zhao, L, Huang, GL, Li, Y and Yin, Y (2020) Ceramic superstrate-based decoupling method for two closely packed antennas with cross-polarization suppression. IEEE Transactions on Antennas and Propagation 69(3), 17511756.Google Scholar
Liu, F, Guo, J, Zhao, L and Huang, GL (2019) Dual-band metasurface-based decoupling method for two closely packed dual-band antennas. IEEE Transactions on Antennas and Propagation 68(1), 552557.CrossRefGoogle Scholar
Zhou, W, Qi, J and Li, Y(2022) Self-decoupling 5G MIMO antenna via grounding for mobile phones. 2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP), Xiamen, China, 12.Google Scholar
Cai, Q, Li, Y, Zhang, X and Shen, X (2019) Wideband MIMO antenna array covering 3.3–7.1 GHz for 5G metal-rimmed smartphone applications. IEEE Access 7, 142070142084.CrossRefGoogle Scholar
Thakur, V, Jaglan, N and Gupta, SD (2022) Side edge printed eight-element compact MIMO antenna array for 5G smartphone applications. Journal of Electromagnetic Waves and Applications 36, 16851701.CrossRefGoogle Scholar
Zou, H, Li, Y, Xu, B, Luo, Y, Wang, M and Yang, G (2019) A dual-band eight-antenna multi-input multi-output array for 5G metal-framed smartphones. International Journal of RF and Microwave Computer-Aided Engineering 29(7), .CrossRefGoogle Scholar
Zhang, X, Li, Y, Wang, W and Shen, W (2019) Ultra-wideband 8-port MIMO antenna array for 5G metal-frame smartphones. IEEE Access 7, 7227372282.CrossRefGoogle Scholar
Li, J, Zhang, X, Wang, Z, Chen, X, Chen, J, Li, Y and Zhang, A (2019) Dual-band eight-antenna array design for MIMO applications in 5G mobile terminals. IEEE Access 7, 7163671644.Google Scholar
Sun, L, Li, Y, Zhang, Z and Feng, Z (2020) Wideband 5G MIMO antenna with integrated orthogonal-mode dual-antenna pairs for metalrimmed smartphones. IEEE Transactions on Antennas and Propagation 68(4), 24942503.Google Scholar
Chang, L, Yu, Y, Wei, K and Wang, H (2019) Polarization-orthogonal co-frequency dual antenna pair suitable for 5G MIMO smartphone with metallic bezels. IEEE Transactions on Antennas and Propagation 67(8), 52125220.CrossRefGoogle Scholar
Huang, D, Du, Z and Wang, Y (2019) Slot antenna array for fifth generation metal frame mobile phone applications. International Journal of RF and Microwave Computer-Aided Engineering 29(7), 19.Google Scholar