Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-28T08:11:29.523Z Has data issue: false hasContentIssue false

Enhancement of off-body communications with a low-SAR, high-gain multiband patch antenna designed with a quad-band artificial magnetic conductor

Published online by Cambridge University Press:  07 November 2023

Vellaichamy Rajavel*
Affiliation:
Department of ECE, National Institute of Technology Agartala, Agartala, Tripura, India
Dibyendu Ghoshal
Affiliation:
Department of ECE, National Institute of Technology Agartala, Agartala, Tripura, India
*
Corresponding author: V. Rajavel; Email: rajavel572@gmail.com

Abstract

The increasing demand for wireless communication has emphasized the need for multiband antennas. This study presents a novel design for a multiband antenna with reduced specific absorption rate (SAR), high gain, and improved front-to-back ratio (FBR) achieved through the integration with a 4 × 4 artificial magnetic conductor (AMC) surface. The proposed antenna covers a wide range of wireless frequency bands, including Industrial, Scientific, and Medical, Wireless Local Area Network, Worldwide Interoperability for Microwave Access, Wi-Fi 6E, and 7, with resonating frequencies at 2.4, 3.2, 5.5, 7.5, and 10 GHz. The AMC unit cell creates four zero-degree reflection phases with double negative properties at 2.5, 3.8, 5.5, and 7.5 GHz. The compact design measures 0.23λ0 × 0.296λ0 × 0.0128λ0 and placed 0.104λ0 above an AMC surface of size 0.512λ0 × 0.512λ0 × 0.1296λ0. This structure enhances the gain by up to 8.55dBi at 6.01 GHz. The proposed antenna has −10 dB impedance bandwidth for these corresponding frequencies viz 2.34–2.43 GHz (3.77%), 2.81–3.83 GHz (30.72%), 4.82–6.21 GHz (25.20%), 7–7.65 GHz (8.87%), and 8.06–10.31 GHz (24.5%). An overall average percentage reduction value of SAR taken at these frequencies has been found to be 96.11% with AMC structure. The antenna sample was successfully fabricated, and the experimental results have been found to match well with the simulation results. This integrated design offers a promising solution for wearable off-body communication devices.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhattacharjee, S, Maity, S, Chaudhuri, SRB and Mitra, M (2019) A compact dual-band dual-polarized omnidirectional antenna for on-body applications. IEEE Transactions on Antennas and Propagation 67, 50445053.CrossRefGoogle Scholar
Wei, K, Li, JY, Wang, L, Xu, R and Xing, ZJ (2017) A new technique to design circularly polarized microstrip antenna by fractal defected ground structure. IEEE Transactions on Antennas and Propagation 65, 37213725.CrossRefGoogle Scholar
Contopanagos, HF (2020) A broadband polarized artificial magnetic conductor metasurface. Journal of Electromagnetic Waves and Applications 34, 18231841.CrossRefGoogle Scholar
Wang, S and Gao, H (2022) A dual-band wearable conformal antenna based on artificial magnetic conductor. International Journal of Antennas and Propagation 2022, 18.Google Scholar
Pathan, TU and Kakde, B (2022) A compact circular polarized MIMO fabric antenna with AMC backing for WBAN applications. Advanced Electromagnetics 11, 2633.CrossRefGoogle Scholar
Chaouche, YB, Nedil, M, Mabrouk, IB and Ramahi, OM (2022) A wearable circularly polarized antenna backed by AMC reflector for WBAN communications. IEEE Access 10, 1283812852.CrossRefGoogle Scholar
Abbas, MH, Singh, S, Sharma, A and Gangwar, D (2023) Low-profile high gain circularly polarized CRLH transmission line inspired antenna with artificial magnetic conductor for wearable applications. International Journal of Microwave and Wireless Technologies 15(7), 12231232.CrossRefGoogle Scholar
Chen, Y, Liu, X, Fan, Y and Yang, H (2022) Wearable wideband circularly polarized array antenna for off-body applications. IEEE Antennas and Wireless Propagation Letters 21, 10511055.CrossRefGoogle Scholar
Lin, C-H, Saito, K, Takahashi, M and Ito, K (2012) A compact planar inverted-F antenna for 2.45 GHz on-body communications. IEEE Transactions on Antennas and Propagation 60, 44224426.CrossRefGoogle Scholar
Del-Rio-Ruiz, R, Lopez-Garde, J-M, Legarda, J, Caytan, O and Rogier, H (2021) A combination of transmission line models as design instruments for electromagnetically coupled microstrip patch antennas in the 2.45 GHz ISM band. IEEE Transactions on Antennas and Propagation 69, 550555.CrossRefGoogle Scholar
Benkhadda, O, Saih, M, Chaji, K, Ahmad, S and Reha, A (2022) A compact dual-band CPW-fed slot monopole antenna for WiFi, WLAN and WiMAX applications. Arabian Journal for Science and Engineering .Google Scholar
Verma, A, Arya, RK and Raghava, SN (2023) Metasurface superstrate beam steering antenna with AMC for 5G/WiMAX/WLAN applications. Wireless Personal Communications 128, 11531170.CrossRefGoogle Scholar
Malekpoor, H, Abolmasoumi, A and Hamidkhani, M (2022) High gain, high isolation, and low‐profile two‐element MIMO array loaded by the Giuseppe Peano AMC reflector for wireless communication systems. IET Microwaves, Antennas & Propagation 16, 4661.CrossRefGoogle Scholar
Paracha, KN, Rahim, SKA, Soh, PJ, Kamarudin, MR, Tan, K-G, Lo, YC and Islam, MT (2019) A low profile, dual-band, dual polarized antenna for indoor/outdoor wearable application. IEEE Access 7, 3327733288.CrossRefGoogle Scholar
Yang, X, Ji, Y, Ge, L, Zeng, X, Wu, Y and Liu, Y (2020) A dual-band radiation-differentiated patch antenna for future wireless scenes. IEEE Antennas and Wireless Propagation Letters 19, 10071011.CrossRefGoogle Scholar
Jagtap, S, Chaudhari, A, Chaskar, N, Kharche, S and Gupta, RK (2018) A wideband microstrip array design using RIS and PRS layers. IEEE Antennas and Wireless Propagation Letters 17, 509512.CrossRefGoogle Scholar
Gao, G-P, Yang, C, Hu, B, Zhang, R-F and Wang, S-F (2019) A wearable PIFA with an all-textile metasurface for 5 GHz WBAN applications. IEEE Antennas and Wireless Propagation Letters 18, 288292.CrossRefGoogle Scholar
Yang, H, Liu, X, Fan, Y and Xiong, L (2022) Dual-band textile antenna with dual circular polarizations using polarization rotation AMC for off-body communications. IEEE Transactions on Antennas and Propagation 70, 41894199.CrossRefGoogle Scholar
Annavarapu, SK, Ghosh, A, Singh, LLK, Chattopadhyay, S and Sim, C-Y-D (2022) Application of dielectric-artificial magnetic conductor composite substrate to design miniaturized P-band microstrip antenna for wireless underground sensor network. IEEE Antennas and Wireless Propagation Letters 21, 23522356.CrossRefGoogle Scholar
Gupta, S, Patil, S, Dalela, C and Kanaujia, BK (2022) Circularly polarized fractal defected ground monopole antenna for Bluetooth/LTE/CNSS/S-band and CA- band applications. Electromagnetics 42, 485497.CrossRefGoogle Scholar
Yu, C, Yang, S, Chen, Y and Zeng, D (2019) Radiation enhancement for a triband microstrip antenna using an AMC reflector characterized with three zero-phases in reflection coefficient. Journal of Electromagnetic Waves and Applications 33, 18461859.CrossRefGoogle Scholar
Gao, M and Zhao, X (2022) Design of tri-band patch antenna with enhanced bandwidth and diversity pattern for indoor wireless communication. Applied Sciences 12, .Google Scholar
Jiang, Z, Wang, Z, Nie, L, Zhao, X and Huang, S (2022) A low-profile ultrawideband slotted dipole antenna based on artificial magnetic conductor. IEEE Antennas and Wireless Propagation Letters 21, 671675.CrossRefGoogle Scholar
Zhou, C, Sun, J, Yang, -W-W, Li, M and Wong, H (2023) A wideband low-profile dual-polarized hybrid antenna using two different modes. IEEE Antennas and Wireless Propagation Letters 22, 114118.CrossRefGoogle Scholar
25.Lin, B, Huang, W, Guo, J, Wang, Y, Ye, H and Ji, X (2022) An ultra-wideband ellipse-shaped linear-to-circular polarization conversion metasurface with high efficiency. Electromagnetics 42, 389400.CrossRefGoogle Scholar
Singh, V, Khalily, M and Tafazolli, R (2022) A metasurface-based electronically steerable compact antenna system with reconfigurable artificial magnetic conductor reflector elements. iScience 25, .CrossRefGoogle ScholarPubMed
El Atrash, M, Abdalla, MA and Elhennawy, HM (2021) A compact highly efficient Π-section CRLH antenna loaded with textile AMC for wireless body area network applications. IEEE Transactions on Antennas and Propagation 69, 648657.CrossRefGoogle Scholar
Saeed, SM, Balanis, CA, Birtcher, CR, Durgun, AC and Shaman, HN (2017) Wearable flexible reconfigurable antenna integrated with artificial magnetic conductor. IEEE Antennas and Wireless Propagation Letters 16, 23962399.CrossRefGoogle Scholar
Gong, Y, Yang, S, Li, B, Chen, Y, Tong, F and Yu, C (2020) Multi-band and high gain antenna using AMC ground characterized with four zero-phases of reflection coefficient. IEEE Access 8, 171457171468.CrossRefGoogle Scholar
Sievenpiper, D, Zhang, L, Broas, RFJ, Alexopolous, NG and Yablonovitch, E (1999) High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques 47, 20592074.CrossRefGoogle Scholar
Dewan, R, Rahim, MKA, Hamid, MR, Yusoff, MFM, Samsuri, NA, Murad, NA and Kamardin, K (2017) Artificial magnetic conductor for various antenna applications: An overview. International Journal of RF and Microwave Computer-Aided Engineering 27, .CrossRefGoogle Scholar
Simovski, CR, de Maagt, P, Tretyakov, SA, Paquay, M and Sochava, AA (2004) Angular stabilisation of resonant frequency of artificial magnetic conductors for TE-incidence. Electronics Letters 40, .CrossRefGoogle Scholar
Smith, DR, Vier, DC, Koschny, T and Soukoulis, CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E 71, .CrossRefGoogle ScholarPubMed
Nur, LO, Kurniawan, A, Sugihartono, S and Munir, A (2015) Theoretical analysis of resonant frequency for AMC-based absorber composed of square patch array. International Journal on Electrical Engineering and Informatics 7, 284296.CrossRefGoogle Scholar