Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-f64jw Total loading time: 0.253 Render date: 2021-04-14T19:15:48.469Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

MIXED INJECTIVE MODULES*

Published online by Cambridge University Press:  24 June 2010

DERYA KESKIN TÜTÜNCÜ
Affiliation:
Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey e-mail: keskin@hacettepe.edu.tr
SAAD H. MOHAMED
Affiliation:
Department of Mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt e-mail: sshhmohamed@yahoo.ca
NIL ORHAN ERTAŞ
Affiliation:
Karabuk University, Department of Mathematics, 78050 Karabuk, Turkey e-mail: orhannil@yahoo.com
Rights & Permissions[Opens in a new window]

Abstract

Since Azumaya introduced the notion of A-injectivity in 1974, several generalizations have been investigated by a number of authors. We introduce some more generalizations and discuss their connection to the previous ones.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2010

References

1.Azumaya, G., Mbuntum, F. and Varadarajan, K., On M-projective and M-injective modules, Pacific J. Math. 95 (1975), 916.CrossRefGoogle Scholar
2.Baba, Y., Note on almost M-injectives, Osaka J. Math. 26 (1989), 687698.Google Scholar
3.Baba, Y. and Harada, M., On almost M-projectives and almost M-injectives, Tsukuba J. Math. 14 (1990), 5369.CrossRefGoogle Scholar
4.Burgess, W. and Raphael, R., On modules with the absolute direct summand property, in Proceedings of the Biennial Ohio State-Denison Conference, 1992 (World Scientific, Singapore, 1993), 137148.Google Scholar
5.Hanada, K., Kado, J. and Oshiro, K., On direct sums of extending modules and internal exchange property, in Proceedings of the 2nd Japan–China Symposium on Ring Theory, 1995 (Okayama, 1996), 4144.Google Scholar
6.Hanada, K., Kuratomi, Y. and Oshiro, K., On direct sums of extending modules and internal exchange property, J. Algebra 250 (2002), 115133.CrossRefGoogle Scholar
7.Mohamed, S. H. and Müller, B. J., Continuous and discrete modules, London Mathematical Society Lecture Note Series 147 (Cambridge University Press, 1990).CrossRefGoogle Scholar
8.Mohamed, S. H. and Müller, B. J., Ojective modules, Comm. Algebra 30 (2002), 18171827.CrossRefGoogle Scholar
9.Santa-Clara, C., Extending modules with injective or semisimple summands, J. Pure Appl. Algebra 127 (1998), 193203.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 113 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 14th April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

MIXED INJECTIVE MODULES*
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

MIXED INJECTIVE MODULES*
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

MIXED INJECTIVE MODULES*
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *