Skip to main content Accessibility help
×
Home

HIGGS BUNDLES OVER ELLIPTIC CURVES FOR COMPLEX REDUCTIVE GROUPS

  • EMILIO FRANCO (a1), OSCAR GARCIA-PRADA (a2) and P. E. NEWSTEAD (a3)

Abstract

We study Higgs bundles over an elliptic curve with complex reductive structure group, describing the (normalisation of) its moduli spaces and the associated Hitchin fibration. The case of trivial degree is covered by the work of Thaddeus in 2001. Our arguments are different from those of Thaddeus and cover arbitrary degree.

Copyright

References

Hide All
1. Atiyah, M. F., Vector bundles over elliptic curves, Proc. Lond. Math. Soc. 3–7 (1957), 414452.
2. Atiyah, M. F. and Bott, R., The Yang–Mills equations over Riemann surfaces, Phil. Trans. Roy. Soc. Lond. A 308 (1982), 523615.
3. Bernstein, N. and Shvartzman, O. V., Chevalley's theorem form complex crystallographic Coxeter groups, Funct. Anal. Appl. 12 (1978), 308310.
4. Biswas, I. and Ramanan, S., An infinitesimal study of the moduli of Hitchin pairs, J. Lond. Math. Soc. 49 (2) (1994), 219231.
5. Borel, A., Friedman, R. and Morgan, J., Almost commuting elements in compact Lie groups, Memoirs Am. Math Soc. 157 (747) (2002).
6. Bröcker, T. and Dieck, T. tom, Representations of compact lie groups, GTM 98 (Springer–Verlag, New York, 1985).
7. Corlette, K., Flat G-bundles with canonical metrics, J. Diff. Geom. 28 (3) (1988), 361382.
8. Donagi, R., Decomposition of spectral covers, Journeés de Geometrie Algebrique D'Orsay, Astérisque 218 (1993), 145175.
9. Donagi, R. and Pantev, T., Langlands duality for Hitchin systems, Inv. Math. 189 (3) (2011), 653735.
10. Donaldson, S., Twisted harmonic maps and the self-duality equations, Proc. Lond. Math. Soc. 3–55 (1) (1987), 127131.
11. Faltings, G., Stable G-bundles and projective connections, J. Algebraic Geom. 2 (1993), 507568.
12. Franco, E., Higgs bundles over elliptic curves, PHD Thesis. Available at https://www.icmat.es/Thesis/EFrancoGomez.pdf.
13. Franco, E., Garcia-Prada, O. and Newstead, P. E., Higgs bundles over elliptic curves, Illinois J. Math. 56 (1) (2014), 4396.
14. Friedman, R. and Morgan, J., Holomorphic principal bundles over elliptic curves I. arXiv:math/9811130 [math.AG].
15. Friedman, R. and Morgan, J., Holomorphic principal bundles over elliptic curves II, J. Diff. Geom. 56 (2000), 301379.
16. Friedman, R., Morgan, J. and Witten, E., Principal G-bundles over elliptic curves, Res. Lett. 5 (1998), 97118.
17. Garcia-Prada, O., Gothen, P. and Riera, I. Mundet i, The Hitchin–Kobayashi correspondence, Higgs pairs and surface group representations, (2012). arXiv:0909.4487v3 [math.DG].
18. Helmke, S. and Slodowy, P., On unstable principal bundles over elliptic curves, Publ. RIMS, Kyoto Univ. 37 (2001), 349395.
19. Hitchin, N. J., The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc. 3–55 (1) (1987), 59126.
20. Hitchin, N. J., Stable bundles and integrable systems, Duke Math. J. 54 (1) (1987), 91114.
21. Joseph, A., On a Harish-Chandra homomorphism, C. R. Acad. Sci. Paris 324 (1997), 759764.
22. Laszlo, Y., About G-bundles over elliptic curves, Ann. Inst. Fourier, Grenoble 48 (2) (1998), 413424.
23. Levasseur, T., Differential operators on a reductive Lie algebra, Lectures given at the University of Washington, Seattle (1995). Available at http://lmba.math.univ-brest.fr/perso/thierry.levasseur/.
24. Looijenga, E., Root systems and elliptic curves, Inv. Math. 38 (1976), 1732.
25. Narasimhan, M. S. and Seshadri, C., Stable and unitary vector bundles on a compact Riemann surface, Ann. Math. 82 (2) (1965), 540567.
26. Nitsure, N., Moduli space of semistable pairs on a curve, Proc. London Math. Soc. 3–62 (1991), 275300.
27. Ramanathan, A., Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975), 129152.
28. Richardson, R. W., Conjugacy classes of n-tuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988), 135.
29. Schweigert, C., On moduli spaces of flat connections with non-simply connected structure group, Nucl. Phys. B 492 (1997), 743755.
30. Simpson, C. T., Higgs bundles and local systems, Inst. Hautes Etudes Sci. Publ. Math. 75 (1992), 595.
31. Simpson, C. T., Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math., Inst. Hautes Etud. Sci. 79 (1994), 47129.
32. Simpson, C. T., Moduli of representations of the fundamental group of a smooth projective variety II, Publ. Math., Inst. Hautes Etud. Sci. 80 (1995), 579.
33. Thaddeus, M., Mirror symmetry, Langlands duality and commuting elements of Lie groups, Int. Math. Res. Not. 22 (2001), 11691193.

MSC classification

HIGGS BUNDLES OVER ELLIPTIC CURVES FOR COMPLEX REDUCTIVE GROUPS

  • EMILIO FRANCO (a1), OSCAR GARCIA-PRADA (a2) and P. E. NEWSTEAD (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed