Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T22:50:01.439Z Has data issue: false hasContentIssue false

A family of rational maps with buried Julia components

Published online by Cambridge University Press:  03 July 2014

SÉBASTIEN GODILLON*
Affiliation:
Paris, France email seb.godillon@gmail.com

Abstract

It is known that the disconnected Julia set of any polynomial map does not contain buried Julia components. But such Julia components may arise for rational maps. The first example is due to Curtis T. McMullen who provided a family of rational maps for which the Julia sets are Cantor of Jordan curves. However, all known examples of buried Julia components, up to now, are points or Jordan curves and comes from rational maps of degree at least five. This paper introduces a family of hyperbolic rational maps with disconnected Julia set whose exchanging dynamics of postcritically separating Julia components is encoded by a weighted dynamical tree. Each of these Julia sets presents buried Julia components of several types: points, Jordan curves, but also Julia components which are neither points nor Jordan curves. Moreover, this family contains some rational maps of degree three with explicit formula that answers a question McMullen raised.

Type
Research Article
Copyright
© Cambridge University Press, 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlfors, L. V.. Conformal Invariants: Topics in Geometric Function Theory (McGraw-Hill Series in Higher Mathematics). McGraw-Hill, New York, 1973.Google Scholar
Barański, K.. On realizability of branched coverings of the sphere. Topology Appl. 116(3) (2001), 279291.CrossRefGoogle Scholar
Blanchard, P., Devaney, R. L., Garijo, A. and Russell, E. D.. A generalized version of the McMullen domain. Int. J. Bifur. Chaos Appl. Sci. Eng. 18(8) (2008), 23092318.CrossRefGoogle Scholar
Beardon, A. F.. Iteration of Rational Functions (Graduate Texts in Mathematics, 132). Springer, New York, 1991.CrossRefGoogle Scholar
Branner, B. and Fagella, N.. Quasiconformal Surgery in Holomorphic Dynamics (Cambridge Studies in Advances Mathematics, 141). Cambridge University Press, Cambridge, 2013.Google Scholar
Carleson, L. and Gamelin, T. W.. Complex Dynamics (Universitext: Tracts in Mathematics). Springer, New York, 1993.CrossRefGoogle Scholar
Guizhen, C. and Lei, T.. A characterization of hyperbolic rational maps. Invent. Math. 183(3) (2011), 451516.Google Scholar
Douady, A. and Hubbard, J. H.. Étude dynamique des polynômes complexes. Partie I (Publications Mathématiques d’Orsay, 84). Université de Paris-Sud, Orsay, 1984.Google Scholar
Douady, A. and Hubbard, J. H.. A proof of Thurston’s topological characterization of rational functions. Acta Math. 171(2) (1993), 263297.CrossRefGoogle Scholar
Devaney, R. L., Holzer, M., Look, D. M., Rocha, M. M. and Uminsky, D.. Singular perturbations of z n. Transcendental Dynamics and Complex Analysis (London Mathematical Society Lecture Note Series, 348). Cambridge University Press, Cambridge, 2008, pp. 111137.CrossRefGoogle Scholar
Garijo, A., Marotta, S. M. and Russell, E. D.. Singular perturbations in the quadratic family with multiple poles. J. Difference Equ. Appl. 19(1) (2013), 122.CrossRefGoogle Scholar
Hurwitz, A.. Über Riemann’sche Flächen mit gegebenen Verzweigungspunkten. Math. Annal. 103 (1891), 160.CrossRefGoogle Scholar
McMullen, C. T.. Automorphisms of rational maps. Holomorphic Functions and Moduli, Vol. I (Mathematical Sciences Research Institute Publications, 10). Springer, New York, 1988, pp. 3160.CrossRefGoogle Scholar
McMullen, C. T.. Complex Dynamics and Renormalization (Annals of Mathematics Studies, 135). Princeton University Press, Princeton, NJ, 1994.Google Scholar
Milnor, J.. On rational maps with two critical points. Exp. Math. 9(4) (2000), 481522.CrossRefGoogle Scholar
Milnor, J.. Dynamics in One Complex Variable (Annals of Mathematics Studies, 160), 3rd edn. Princeton University Press, Princeton, NJ, 2006.Google Scholar
Pilgrim, K. M. and Lei, T.. Combining rational maps and controlling obstructions. Ergod. Th. & Dynam. Sys. 18(1) (1998), 221245.CrossRefGoogle Scholar
Pilgrim, K. M. and Lei, T.. On disc-annulus surgery of rational maps. Dynamical systems, Proceedings of the International Conference in Honor of Professor Shantao Liao. World Scientific, Singapore, 1999, pp. 237250.Google Scholar
Pilgrim, K. M. and Lei, T.. Rational maps with disconnected Julia set. Géométrie complexe et syst\`emes dynamiques, colloque en l’honneur d’Adrien Douady (Astérisque, 261). Société Mathématique de France, Paris, 2000, pp. 349384.Google Scholar
Shishikura, M.. On the quasiconformal surgery of rational functions. Ann. Sci. École Norm. Sup. (4) 20(1) (1987), 129.CrossRefGoogle Scholar
Shishikura, M.. Trees associated with the configuration of Herman rings. Ergod. Th. & Dynam. Sys. 9(3) (1989), 543560.CrossRefGoogle Scholar