Skip to main content Accessibility help
×
Home

Derived subalgebras of centralisers and finite $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}W$ -algebras

  • Alexander Premet (a1) and Lewis Topley (a2)

Abstract

Let $\mathfrak{g}=\mbox{Lie}(G)$ be the Lie algebra of a simple algebraic group $G$ over an algebraically closed field of characteristic $0$ . Let $e$ be a nilpotent element of $\mathfrak{g}$ and let $\mathfrak{g}_e=\mbox{Lie}(G_e)$ where $G_e$ stands for the stabiliser of $e$ in $G$ . For $\mathfrak{g}$ classical, we give an explicit combinatorial formula for the codimension of $[\mathfrak{g}_e,\mathfrak{g}_e]$ in $\mathfrak{g}_e$ and use it to determine those $e\in \mathfrak{g}$ for which the largest commutative quotient $U(\mathfrak{g},e)^{\mbox{ab}}$ of the finite $W$ -algebra $U(\mathfrak{g},e)$ is isomorphic to a polynomial algebra. It turns out that this happens if and only if $e$ lies in a unique sheet of $\mathfrak{g}$ . The nilpotent elements with this property are called non-singular in the paper. Confirming a recent conjecture of Izosimov, we prove that a nilpotent element $e\in \mathfrak{g}$ is non-singular if and only if the maximal dimension of the geometric quotients $\mathcal{S}/G$ , where $\mathcal{S}$ is a sheet of $\mathfrak{g}$ containing $e$ , coincides with the codimension of $[\mathfrak{g}_e,\mathfrak{g}_e]$ in $\mathfrak{g}_e$ and describe all non-singular nilpotent elements in terms of partitions. We also show that for any nilpotent element $e$ in a classical Lie algebra $\mathfrak{g}$ the closed subset of Specm  $U(\mathfrak{g},e)^{\mbox{ab}}$ consisting of all points fixed by the natural action of the component group of $G_e$ is isomorphic to an affine space. Analogues of these results for exceptional Lie algebras are also obtained and applications to the theory of primitive ideals are given.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Derived subalgebras of centralisers and finite $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}W$ -algebras
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Derived subalgebras of centralisers and finite $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}W$ -algebras
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Derived subalgebras of centralisers and finite $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}W$ -algebras
      Available formats
      ×

Copyright

References

Hide All
[BV85]Barbasch, D. and Vogan, D. A., Unipotent representations of complex semisimple groups, Ann. of Math. (2) 121 (1985), 41110.
[BB92]Blanc, P. and Brylinski, J.-L., Cyclic homology and the Selberg principle, J. Funct. Anal. 109 (1992), 289330.
[Bor76]Borho, W., Primitive vollprime Ideale in der Enhüllenden von so(5, ℂ), J. Algebra 43 (1976), 619654.
[Bor81]Borho, W., Über Schichten halbeinfacher Lie-Algebren, Invent. Math. 65 (1981), 283317.
[BGR73]Borho, W., Gabriel, P. and Rentschler, R., Primideale in Einhüllenden auflösbarer Lie-Algebren, Lecture Notes in Mathematics, vol. 357 (Springer, Berlin, 1973).
[BJ01]Borho, W. and Joseph, A., Sheets and topology of primitive spectra for semisimple Lie algebras, J. Algebra 244 (2001), 76167; Corrigendum 259 (2003), 310–311.
[BK79]Borho, W. and Kraft, H., Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen, Comment. Math. Helv. 54 (1979), 61104.
[Bou68]Bourbaki, N., Groupes et algèbres de Lie, Chapitres IV, V, VI (Hermann, Paris, 1968).
[Bru11]Brundan, J., Mœglin’s theorem and Goldie rank polynomials in Cartan type A, Compositio Math. 147 (2011), 1174111771.
[BGK08]Brundan, J., Goodwin, S. M. and Kleshchev, A., Highest weight theory for finite W-algebras, Int. Math. Res. Not. 15 (2008), Art. ID rnn051.
[BK06]Brundan, J. and Kleshchev, A., Shifted Yangians and finite W-algebras, Adv. Math. 200 (2006), 136195.
[Bry03]Brylinski, R., Dixmier algebras for classical complex nilpotent orbits via Kraft–Procesi models I, Progress in Mathematics, vol. 213 (Birkhäuser, Boston, 2003), 4967.
[Car85]Carter, R. W., Finite groups of Lie type—conjugacy classes and complex characters, 2nd edition (Wiley, New York, 1985).
[CM93]Collingwood, D. H. and McGovern, W., Nilpotent orbits in semisimple Lie algebras (Van Nostrand Reinhold, New York, 1993).
[Con74]Conze, N., Algèbres d’opérateurs différentiels et quotients des algèbres enveloppantes, Bull. Soc. Math. France 102 (1974), 379415.
[deGE09]de Graaf, W. A. and Elashvili, A., Induced nilpotent orbits of the simple Lie algebras of exceptional type, Georgian Math. J. 2 (2009), 257278.
[deG13]de Graaf, W. A., Computations with nilpotent orbits in SLA, Preprint (2013), arXiv:1301.1149v1 [math.RA].
[Dix74]Dixmier, J., Algèbres enveloppantes (Gauthier-Villars, Paris, 1974).
[Ela84]Elashvili, A. G., Sheets of the exceptional Lie algebras, Studies in Algebra (Tbilisi University Press, Tbilisi, 1984), 171194 (in Russian).
[EG93]Elashvili, A. G. and Grélaud, G., Classification des éléments nilpotents compacts des algèbres de Lie simples, C. R. Acad. Sci. Paris, Série I 317 (1993), 445447.
[Fu07]Fu, B., Extremal contractions, stratified Mukai flops and Springer maps, Adv. Math. 213 (2007), 165182.
[Fu10]Fu, B., On ℚ-factorial terminalizations of nilpotent orbits, J. Math. Pures Appl. 93 (2010), 623635.
[GG02]Gan, W. L. and Ginzburg, V., Quantization of Slodowy slices, Int. Math. Res. Not. 5 (2002), 243255.
[Gin09]Ginzburg, V., Harish–Chandra bimodules for quantized Slodowy slices, Represent. Theory 13 (2009), 236271.
[GRU10]Goodwin, S. M., Röhrle, G. and Ubly, G., On 1-dimensional representations of finite W-algebras associated to simple Lie algebras of exceptional type, LMS J. Comput. Math. 13 (2010), 357369.
[ImH05]Im Hof, A., The Sheets of a Classical Lie Algebra, PhD thesis, University of Basel, 2005, available at http://edoc.unibas.ch.
[Izo12]Izosimov, A., The derived algebra of a stabilizer, families of coadjoint orbits and sheets, Preprint (2012), arXiv:1202.1135v2 [math.RT].
[Jan83]Jantzen, J. C., Einhüllende Algebren halbeinfacher Lie-Algebren (Springer, Berlin, 1983).
[Jan04]Jantzen, J. C., Nilpotent orbits in representation theory, in Representation and Lie theory, Progress in Mathematics, vol. 228, ed. Orsted, B. (Birkhäuser, Boston, 2004), 1211.
[Jos76]Joseph, A., The minimal orbit in a semisimple Lie algebra and its associated maximal ideal, Ann. Sci. Éc. Norm. Supér. 9 (1976), 130.
[Jos80]Joseph, A., Goldie rank in the enveloping algebra of a semisimple Lie algebra I, II, J. Algebra 65 (1980), 269306.
[Jos85a]Joseph, A., On the associated variety of a primitive ideal, J. Algebra 93 (1985), 509523.
[Jos85b]Joseph, A., A surjectivity theorem for rigid highest weight modules, Invent. Math. 92 (1985), 567596.
[Kat83]Katsylo, P. I., Sections of sheets in a reductive algebraic Lie algebra, Math. USSR-Izv. 20 (1983), 449458.
[Kem83]Kempken, G., Induced conjugacy classes in classical Lie algebras, Abh. Math. Semin. Univ. Hambg. 53 (1983), 5383.
[KP82]Kraft, H. and Procesi, C., On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), 539602.
[LT07]Lawther, R. and Testerman, D. M., Centres of centralizers of unipotent elements in simple algebraic groups, Preprint (2007), 301pp.
[LT11]Lawther, R. and Testerman, D. M., Centres of centralizers of unipotent elements in simple algebraic groups, Mem. Amer. Math. Soc. 210 (2011), 188 pp.
[Los10a]Losev, I., Quantized symplectic actions and W-algebras, J. Amer. Math. Soc. 23 (2010), 3559.
[Los10b]Losev, I., Quantizations of nilpotent orbits vs 1-dimensional representations of W-algebras, Preprint (2010), arXiv:1004.1669v1 [math.RT].
[Los11a]Losev, I., 1-dimensional representations and parabolic induction for W-algebras, Adv. Math. 226 (2011), 48414883.
[Los11b]Losev, I., Finite-dimensional representations of W-algebras, Duke Math. J. 159 (2011), 99143.
[Los12]Losev, I., Dimensions of irreducible modules over W-algebras and Goldie ranks, Preprint (2012), arXiv:1209.1083v2 [math.RT].
[LS79]Lusztig, G. and Spaltenstein, N., Induced unipotent classes, J. Lond. Math. Soc. (2) 19 (1979), 4152.
[Mat89]Matsumura, H., Commutative ring theory, 2nd edition (Cambridge University Press, Cambridge, 1989); translated from the Japanese by Miles Reid.
[McG94]McGovern, W. M., Completely prime primitive ideals and quantization, Mem. Amer. Math. Soc. 108(519) (1994), 67 pp.
[Mœg87]Mœglin, C., Idéaux complètement premiers de l’algèbre enveloppante de gln(ℂ), J. Algebra 106 (1987), 287366.
[Mœg88]Mœglin, C., Modèle de Whittaker et idéaux primitifs complètement premiers dans les algèbres enveloppantes des algèbres de Lie semi-simples complexes II, Math. Scand. 63 (1988), 535.
[Mor08]Moreau, A., On the dimension of the sheets of a reductive Lie algebra, J. Lie Theory 18 (2008), 671696.
[Mor13]Moreau, A., Corrigendum to ‘On the dimension of the sheets of a reductive Lie algebra’, J. Lie Theory 23 (2013), 10751083.
[Nam09]Namikawa, Y., Induced nilpotent orbits and birational geometry, Adv. Math. 222 (2009), 547564.
[Pan04]Panyushev, D. I., On reachable elements and the boundary of nilpotent orbits in simple Lie algebras, Bull. Sci. Math. 128 (2004), 859870.
[Pre02]Premet, A., Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), 155; with an appendix by S. Skryabin.
[Pre03]Premet, A., Nilpotent orbits in good characteristic and the Kempf–Rousseau theory, J. Algebra 260 (2003), 338366.
[Pre07]Premet, A., Enveloping algebras of Slodowy slices and the Joseph ideal, J. Eur. Math. Soc. (JEMS) 9 (2007), 487543.
[Pre10]Premet, A., Commutative quotients of finite W-algebras, Adv. Math. 225 (2010), 269306.
[Pre11]Premet, A., Enveloping algebras of Slodowy slices and Goldie rank, Transform. Groups 16 (2011), 857888.
[Pre14]Premet, A., Multiplicity-free primitive ideals associated with rigid nilpotent orbits, Transform. Groups 19 (2014), 569641.
[Sha94]Shafarevich, I. R., Basic algebraic geometry 1. Varieties in projective space, 2nd edition (Springer, Berlin, 1994); translated from the 1988 Russian edition and with notes by Miles Reid.
[Spa82]Spaltenstein, N., Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946 (Springer, Berlin, 1982).
[TY05]Tauvel, P. and Yu, R., Lie algebras and algebraic groups (Springer, Berlin, 2005).
[Top14]Topley, L., Invariants of centralisers in positive characteristic, J. Algebra 399 (2014), 10211055.
[Yak06]Yakimova, O., The centralisers of nilpotent elements in classical Lie algebras, Funct. Anal. Appl. 40 (2006), 4251.
[Yak10]Yakimova, O., On the derived algebra of a centraliser, Bull. Sci. Math. 134 (2010), 579587.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Derived subalgebras of centralisers and finite $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}W$ -algebras

  • Alexander Premet (a1) and Lewis Topley (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed