Skip to main content Accessibility help
×
×
Home

Utilization of Spinal Intra-operative Three-dimensional Navigation by Canadian Surgeons and Trainees: A Population-based Time Trend Study

  • Daipayan Guha (a1) (a2), Ali Moghaddamjou (a1), Zaneen H. Jiwani (a3), Naif M. Alotaibi (a1), Michael G. Fehlings (a1) (a2), Todd G. Mainprize (a1), Albert Yee (a2) (a4) and Victor X.D. Yang (a1) (a2) (a5)...

Abstract

Background

Computer-assisted navigation (CAN) improves the accuracy of spinal instrumentation in vertebral fractures and degenerative spine disease; however, it is not widely adopted because of lack of training, high capital costs, workflow hindrances, and accuracy concerns. We characterize shifts in the use of spinal CAN over time and across disciplines in a single-payer health system, and assess the impact of intra-operative CAN on trainee proficiency across Canada.

Methods

A prospectively maintained Ontario database of patients undergoing spinal instrumentation from 2005 to 2014 was reviewed retrospectively. Data were collected on treated pathology, spine region, surgical approach, institution type, and surgeon specialty. Trainee proficiency with CAN was assessed using an electronic questionnaire distributed across 15 Canadian orthopedic surgical and neurosurgical programs.

Results

In our provincial cohort, 16.8% of instrumented fusions were CAN-guided. Navigation was used more frequently in academic institutions (15.9% vs. 12.3%, p<0.001) and by neurosurgeons than orthopedic surgeons (21.0% vs. 12.4%, p<0.001). Of residents and fellows 34.1% were fully comfortable using spinal CAN, greater for neurosurgical than orthopedic surgical trainees (48.1% vs. 11.8%, p=0.008). The use of CAN increased self-reported proficiency in thoracic instrumentation for all trainees by 11.0% (p=0.036), and in atlantoaxial instrumentation for orthopedic trainees by 18.0% (p=0.014).

Conclusions

Spinal CAN is used most frequently by neurosurgeons and in academic centers. Most spine surgical trainees are not fully comfortable with the use of CAN, but report an increase in technical comfort with CAN guidance particularly for thoracic instrumentation. Increased education in spinal CAN for trainees, particularly at the fellowship stage and, specifically, for orthopedic surgery, may improve adoption.

Utilisation d’un système de navigation chirurgicale de la colonne vertébrale par des chirurgiens et des stagiaires : une étude de séries temporelles.

Contexte

La chirurgie assistée par ordinateur (CAO) permet d’améliorer la précision de l’exploration instrumentale employée dans le cas de fractures vertébrales et de maladies dégénératives de la colonne vertébrale. Cela dit, elle n’a pas encore été adoptée à grande échelle en raison d’un manque de formation, de coûts d’immobilisation considérables, d’obstacles liés à l’organisation du travail et de doutes quant à son exactitude. C’est dans cette perspective que nous voulons décrire, parmi divers champs de pratique, les transformations se rapportant au fil du temps à l’utilisation de la CAO de la colonne vertébral dans le cadre d’un régime de santé universel à payeur unique. Qui plus est, nous voulons aussi évaluer l’impact de la CAO en ce qui a trait aux compétences des stagiaires partout au Canada.

Méthodes

Pour ce faire, nous avons passé en revue de façon rétrospective une base de données tenue à jour prospectivement au sujet de patients ontariens ayant été soumis de 2005 à 2014 à une exploration instrumentale de la colonne vertébrale. Les données obtenues portaient sur le type de pathologie traitée, sur la région de la colonne vertébrale visée, sur l’approche chirurgicale privilégiée, sur le type d’établissement et sur la spécialité du chirurgien ayant intervenu. Les compétences des stagiaires en matière de CAO ont également été évaluées à l’aide d’un questionnaire en ligne diffusé au sein de 15 programmes canadiens de chirurgie orthopédique et de neurochirurgie.

Résultats

En tout, 16,8 % des fusions instrumentées réalisées au sein de notre cohorte ontarienne l’ont été à l’aide de la technique de la CAO. Cette dernière a été utilisée plus fréquemment dans des établissements d’enseignement universitaire (15,9 % par opposition à 12,3 % pour les autres; p<0,001) mais aussi plus souvent par des neurochirurgiens (21,0 % par opposition à 12,4 % par des chirurgiens orthopédiques; p<0,001). En outre, 34,1 % des résidents et des médecins suivant une formation complémentaire étaient parfaitement à l’aise dans l’utilisation de la CAO de la colonne vertébrale (48,1 % de ceux se spécialisant en neurochirurgie par opposition à 11,8 % de ceux se spécialisant en chirurgie orthopédique; p = 0,008). L’utilisation de la CAO a par ailleurs entraîné une augmentation, auto-déclarée, de 11,0 % de l’aptitude à faire usage de l’exploration instrumentale thoracique chez tous les stagiaires (p = 0,036); dans le cas de l’exploration instrumentale atlanto-axiale, cette augmentation a été de 18,0 % (p = 0,014) chez les stagiaires en chirurgie orthopédique.

Conclusions

La CAO de la colonne vertébrale est employée le plus souvent par les neurochirurgiens dans des établissements d’enseignement universitaire. La plupart des stagiaires en chirurgie de la colonne vertébrale ne sont pas entièrement à l’aise en ce qui concerne l’utilisation de la CAO. Toutefois, ils ont signalé une augmentation de leur aisance à utiliser la CAO et à bénéficier de son assistance, en particulier dans des cas d’exploration instrumentale thoracique. En somme, une plus ample formation en matière de CAO de la colonne vertébrale offerte aux stagiaires, particulièrement à ceux suivant une formation complémentaire et dans le champ de la chirurgie orthopédique, pourrait favoriser son adoption.

Copyright

Corresponding author

Correspondence to: D. Guha, Division of Neurosurgery, University of Toronto, 399 Bathurst Street, 4th Floor, West Wing Toronto, Ontario, Canada M5T 2S8. Email: deep.guha@mail.utoronto.ca

References

Hide All
1. Cadarette, SM, Burden, AM. The burden of osteoporosis in Canada. Can Pharm J / Rev des Pharm du Canada. 2011;144(Suppl 1):S3-S3.e1.
2. Baaj, AA, Uribe, JS, Nichols, TA, et al. Health care burden of cervical spine fractures in the United States: analysis of a nationwide database over a 10-year period. J Neurosurg Spine. 2010;13(1):61-66.
3. Martin, BI, Turner, JA, Mirza, SK, Lee, MJ, Comstock, BA, Deyo, RA. Trends in health care expenditures, utilization, and health status among US adults with spine problems, 1997–2006. Spine (Phila Pa 1976). 2009;34(19):2077-2084.
4. Burge, R, Dawson-Hughes, B, Solomon, DH, Wong, JB, King, A, Tosteson, A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007;22(3):465-475.
5. Xiao, R, Miller, JA, Sabharwal, NC, et al. Clinical outcomes following spinal fusion using an intraoperative computed tomographic 3D imaging system. J Neurosurg Spine. 2017;26:1-10.
6. Acikbas, SC, Arslan, FY, Tuncer, MR, Matge, G, Muciejczak, A. The effect of transpedicular screw misplacement on late spinal stability. Acta Neurochir (Wien). 2003;145(11):949-955.
7. Villard, J, Ryang, Y-M, Demetriades, AK, et al. Radiation exposure to the surgeon and the patient during posterior lumbar spinal instrumentation: a prospective randomized comparison of navigated versus non-navigated freehand techniques. Spine (Phila Pa 1976). 2014;39(13):1004-1009. https://doi.org/10.1097/BRS.0000000000000351.
8. Nelson, EM, Monazzam, SM, Kim, KD, Seibert, JA, Klineberg, EO. Intraoperative fluoroscopy, portable X-ray, and CT: patient and operating room personnel radiation exposure in spinal surgery. Spine J. 2014;14(12):2985-2991.
9. Mason, A, Paulsen, R, Babuska, JM, et al. The accuracy of pedicle screw placement using intraoperative image guidance systems. J Neurosurg Spine. 2014;20(2):196-203.
10. Fu, TS, Wong, CB, Tsai, TT, Liang, YC, Chen, LH, Chen, WJ. Pedicle screw insertion: computed tomography versus fluoroscopic image guidance. Int Orthop. 2008;32(4):517-521.
11. Lee, GY, Massicotte, EM, Rampersaud, YR.. Clinical accuracy of cervicothoracic pedicle screw placement: a comparison of the “open” lamino-foraminotomy and computer-assisted techniques. J Spinal Disord Tech. 2007;20(1):25-32.
12. Mirza, SK, Wiggins, GC, Kuntz, C, et al. Accuracy of thoracic vertebral body screw placement using standard fluoroscopy, fluoroscopic image guidance, and computed tomographic image guidance: a cadaver study. Spine (Phila Pa 1976). 2003;28(4):402-413.
13. Luther, N, Iorgulescu, JB, Geannette, C, et al. Comparison of navigated versus non-navigated pedicle screw placement in 260 patients and 1434 screws screw accuracy, screw size, and the complexity of surgery. J Spinal Disord Tech. 2015;28(5):298-303.
14. Fichtner, J, Hofmann, N, Rienmüller, A, et al. Revision rate of misplaced pedicle screws of the thoracolumbar spine—comparison of 3d fluoroscopy navigated with freehand placement: a systematic analysis and review of the literature. World Neurosurg. 2018;109:e24-e32. https://doi.org/10.1016/j.wneu.2017.09.091.
15. Dea, N, Fisher, CG, Batke, J, et al. Economic evaluation comparing intraoperative cone beam CT-based navigation and conventional fluoroscopy for the placement of spinal pedicle screws: a patient-level data cost-effectiveness analysis. Spine J 2015 https://doi.org/10.1016/j.spinee.2015.09.062.
16. Sanborn, MR, Thawani, JP, Whitmore, RG, et al. Cost-effectiveness of confirmatory techniques for the placement of lumbar pedicle screws. Neurosurg Focus. 2012;33(1):E12. https://doi.org/10.3171/2012.2.FOCUS121.
17. Hartl, R, Lam, KS, Wang, J, Korge, A, Kandziora, F, Audige, L. Worldwide survey on the use of navigation in spine surgery. World Neurosurg. 2013;79(1):162-172.
18. Choo, AD, Regev, G, Garfin, SR, Kim, CW. Surgeons’ perceptions of spinal navigation: analysis of key factors affecting the lack of adoption of spinal navigation technology. SAS J. 2008;2(4):189-194.
19. Schröder, J, Wassmann, H. Spinal navigation: an accepted standard of care? Zentralbl Neurochir. 2006;67(3):123-128.
20. Sundar, SJ, Healy, AT, Kshettry, VR, Mroz, TE, Schlenk, R, Benzel, EC. A pilot study of the utility of a laboratory-based spinal fixation training program for neurosurgical residents. J Neurosurg Spine. 2016;24(5):850-856.
21. Lorias-Espinoza, D, Carranza, VG, de León, FC-P, Escamirosa, FP, Martinez, AM. A low-cost, passive navigation training system for image-guided spinal intervention. World Neurosurg. 2016;95:322-328.
22. Gottschalk, MB, Yoon, ST, Park, DK, Rhee, JM, Mitchell, PM. Surgical training using three-dimensional simulation in placement of cervical lateral mass screws: a blinded randomized control trial. Spine J. 2015;15(1):168-175.
23. Rambani, R, Ward, J, Viant, W. Desktop-based computer-assisted orthopedic training system for spinal surgery. J Surg Educ. 2014;71(6):805-809. https://doi.org/10.1016/j.jsurg.2014.04.012..
24. Gasco, J, Patel, A, Ortega-Barnett, J, et al. Virtual reality spine surgery simulation: an empirical study of its usefulness. Neurol Res. 2014;36(11):968-973.
25. Luciano, CJ, Banerjee, PP, Bellotte, B, et al. Learning retention of thoracic pedicle screw placement using a high-resolution augmented reality simulator with haptic feedback. Neurosurgery. 2011;69(1 Suppl Operative):ons14-ons19; discussion ons19.
26. Podolsky, DJ, Martin, AR, Whyne, CM, Massicotte, EM, Hardisty, MR, Ginsberg, HJ. Exploring the role of 3-dimensional simulation in surgical training: feedback from a pilot study. J Spinal Disord Tech. 2010;23(8):e70-e74.
27. Ryang, Y-M, Villard, J, Obermüller, T, et al. Learning curve of 3D fluoroscopy image–guided pedicle screw placement in the thoracolumbar spine. Spine J. 2015;15(3):467-476.
28. Wood, MJ, McMillen, J. The surgical learning curve and accuracy of minimally invasive lumbar pedicle screw placement using CT based computer-assisted navigation plus continuous electromyography monitoring - a retrospective review of 627 screws in 150 patients. Int J Spine Surg. 2014;8:27-27.
29. Roberts, DW, Strohbehn, JW, Hatch, JF, Murray, W, Kettenberger, H. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg. 1986;65(4):545-549.
30. Bindal, RK, Glaze, S, Ognoskie, M, Tunner, V, Malone, R, Ghosh, S. Surgeon and patient radiation exposure in minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Spine. 2008;9(6):570-573.
31. Funao, H, Ishii, K, Momoshima, S, et al. Surgeons’ exposure to radiation in single- and multi-level minimally invasive transforaminal lumbar interbody fusion: a prospective study. In: Fehlings M, editor. PLoS One. 2014; Vol. 9, Issue (4), pp. e95233. https://doi.org/10.1371/journal.pone.0095233.
32. Jakubovic, R, Guha, D, Lu, M, et al. A.709: design and development of a novel, fast, extensive intraoperative registration technique of optical machine vision to pre-operative imaging for cranial and spinal neurosurgical procedures: clinical feasibility and comparison with existing neuronavi. J Neurosurg. 2016;124(4):A1146-A1209.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Neurological Sciences
  • ISSN: 0317-1671
  • EISSN: 2057-0155
  • URL: /core/journals/canadian-journal-of-neurological-sciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed