Skip to main content Accessibility help
×
Home

Boundary two-parameter eight-state supersymmetric fermion model and Bethe ansatz solution

  • Anthony J. Bracken (a1), Xiang-Yu Ge (a2), Yao-Zhong Zhang (a3) and Huan-Qiang Zhou (a4)

Abstract

The recently introduced two-parameter eight-state Uq [gl(3|1)] supersymmetric fermion model is extended to include boundary terms. Nine classes of boundary conditions are constructed, all of which are shown to be integrable via the graded boundary quantum inverse scattering method. The boundary systems are solved by using the coordinate Bethe ansatz and the Bethe ansatz equations are given for all nine cases.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Boundary two-parameter eight-state supersymmetric fermion model and Bethe ansatz solution
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Boundary two-parameter eight-state supersymmetric fermion model and Bethe ansatz solution
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Boundary two-parameter eight-state supersymmetric fermion model and Bethe ansatz solution
      Available formats
      ×

Copyright

References

Hide All
[1]Asakawa, H. and Suzuki, M., ‘Finite-size corrections in the XXX model and the Hubbard model with boundary fields’, J. Phys. A 29 (1996), 225–145.
[2]Bariev, R.Z., ‘Integrable model of interacting XY chains’, J. Phys. A 24 (1991), L919–L923.
[3]Bariev, R.Z., Klümper, A. and Zittartz, J., ‘A new integrable two-parameter model of strongly correlated electrons in one-dimension’, Europhys. Lett. 32 (1995), 8590.
[4]Bracken, A.J., Ge, X.-Y., Zhang, Y.-Z. and Zhou, H.-Q., ‘Integrable open-boundary conditions for the g-deformed super symmetric U model of strongly correlated electrons’, Nuclear Phys. B 516 (1998), 588602.
[5]Bracken, A.J., Ge, X.-Y., Zhang, Y.-Z. and Zhou, H.-Q., ‘An open-boundary integrable model of three coupled XY spin chains’, Nuclear Phys. B 516 (1998), 603622.
[6]Bracken, A.J., Gould, M.D., Links, J.R. and Zhang, Y.-Z., ‘New supersymmetric and exactly solvable model of correlated electrons’, Phys. Rev. Lett. 74 (1995), 27682771.
[7]Vega, H.J. de and Gonzalez-Ruiz, A., ‘Boundary k-matrices for the six vertex and the n(2n – 1)A n-1 vertex models’, J. Phys. A 26 (1993), L519–L524.
[8]Essler, F.H.L. and Korepin, V.E., Exactly solvable models of strongly correlated electrons (World Scientific, Singapore, 1994).
[9]Ge, X.-Y., Gould, M.D., Zhang, Y.-Z. and Zhou, H.-Q., ‘A new two-parameter integrable model of strongly correlated fermions with quantum superalgegra symmetry’, J. Phys. A 31 (1998), 52335239.
[10]Gonzalez-Ruiz, A., ‘Integrable open-boundary conditions for the supersymmetric TJ model’, Nuclear Phys. B 424 (1994), 468486.
[11]Gould, M.D., Hibberd, K.E., Links, J.R. and Zhang, Y.-Z., ‘Integrable electron model with correlated hopping and quantum supersymmetry’, Phys. Lett. A 212 (1996), 156160.
[12]Gould, M.D., Zhang, Y.-Z. and Zhou, H.-Q., ‘Eight-state supersymmetric U model of strongly correlated fermions’, Phys. Rev. B 57 (1998), 94989501.
[13]Mezincescu, L. and Nepomechie, R.I., ‘Integrable open spin chains with non-symmetric R-matrices’, J. Phys. A 24 (1991), L17–L23.
[14]Shiroishi, M., Wadati, M., ‘Bethe ansatz equation for the Hubbard model with boundary fields’, J. Phys. Soc. Japan 66 (1997), 14.
[15]Sklyanin, E.K., ‘Boundary conditions for integrable quantum sytems’, J. Phys. A 21 (1988), 23752389.
[16]Zhang, Y.-Z. and Zhou, H.-Q., ‘Quantum integrability and exact solution of the super-symmetric U model with boundary terms’, Phys. Reu. B 58 (1998), 5153.
[17]Zhang, Y.-Z. and Zhou, H.-Q., ‘New integrable boundary conditions for the (q-deformed supersymmetric U model and Bethe ansatz equations)’, Phys. Lett. A 244 (1998), 427431.
[18]Zhou, H.-Q., ‘Quantum integrability for the one-dimensional Hubbard open chain’, Phys. Rev. B 54 (1996), 4143.
[19]Zhou, H.-Q., ‘Integrable open-boundary conditions for the one-dimensional Bariev chain’, Phys. Rev. B 53 (1996), 50985100.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Boundary two-parameter eight-state supersymmetric fermion model and Bethe ansatz solution

  • Anthony J. Bracken (a1), Xiang-Yu Ge (a2), Yao-Zhong Zhang (a3) and Huan-Qiang Zhou (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed