Skip to main content Accessibility help
×
Home

True fractional calcium absorption in Chinese children measured with stable isotopes (42Ca and 44Ca)

  • Warren T.L. Lee (a1), Sophie S.F. Leung (a1), Susan J.Fairweather-Tait (a2), Dora M.Y. Leung (a1), Heidi S.Y. Tsang (a1), John Eagles (a2), Tom Fox (a2), S.H. Wang (a3), Y.C. Xu (a3), W.P. Zeng (a4), Joseph Lau (a5) and J.R.L. Masarei (a6)...

Abstract

True fractional Ca absorption (TFCA) was compared in children with different habitual Ca intakes using a double-label stable-isotope technique. Chinese children aged 7 years from Hongkong (n 22) and Jiangmen (n 12) participated in the study. An oral administration of 8 mg 44Ca in 100 g chocolate milk was given shortly after an intravenous injection of 0·75 mg 42Ca. Ca isotopic ratios were determined in urine samples collected 24 h later using thermal-ionization mass spectrometry. There was no significant difference in TFCA between Jiangmen and Hongkong children (P=0·16). TFCA of a lower-Ca-intake group (Ca > 500 mg/d, n 19) with mean Ca intake 359 mg/d was 63·1 (SD 10·7)%; and that of a higher-Ca-intake group (Ca > 500 mg/d, n 15) with mean Ca intake 862 mg/d was 54·8 (SD 7·3)%; the difference in TFCA was significant (P=0·016). Serum levels of 25-hydroxycholecalciferol of the children were adequate (33·7 (SD 7·7) ng/ml). The present study indicates that growing children accustomed to a low-Ca diet appear to be able to enhance their absorptive capacity. If it is assumed that dietary Ca absorption by Chinese children resembles their TFCA from a single meal of chocolate milk, then the recommended dietary allowance (RDA) for Ca for Chinese children would be lower than the US RDA (800 mg/d), which is based on an estimated 40% Ca absorption as reported for Caucasian children. A comparative absorption study is necessary to determine whether there is any difference in TFCA between Caucasian and Chinese children.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      True fractional calcium absorption in Chinese children measured with stable isotopes (42Ca and 44Ca)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      True fractional calcium absorption in Chinese children measured with stable isotopes (42Ca and 44Ca)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      True fractional calcium absorption in Chinese children measured with stable isotopes (42Ca and 44Ca)
      Available formats
      ×

Copyright

References

Hide All
Abrams, S. A., Lipnick, R. N., Vieira, N. C., Stuff, J. E. & Yergey, A. L. (1993) Calcium absorption and metabolism in children with juvenile rheumatoid arthritis assessed using stable isotopes. Journal of Rheumatology 20, 11961200.
Anderson, J. J. B. (1992) The role of nutrition in the functioning of skeletal tissue. Nutrition Review 50, 388394.
Begum, A. & Pereira, S. M. (1969) Calcium balance studies on children accustomed to low Ca intakes. British Journal of Nutrition 23, 905911.
Bingham, S. A. (1987) The dietary assessment of individuals: methods, accuracy, new techniques and recommendations. Nutrition Abstracts and Reviews 57, 705742.
Burke, B. S. (1947) The dietary history as a tool in research. Journal of the American Dietetic Association 23, 10411046.
Chan, E. P. L., Lau, E., Shek, C. C., MacDonald, D., Woo, J., Leung, P. C. & Swaminathan, R. (1992) Agerelated changes in bone density, serum parathyroid hormone, calcium absorption and other indices of bone metabolism in Chinese women. Clinical Endocrinology 36, 375381.
Church, C. F. & Church, H. N. (1975) Food Values of Portions Commonly Used. Philadelphia: J. B. Lippincott Co.
DeGrazia, J. A., Ivanovich, P., Fellows, H. & Rich, C. (1965) A double label technique for measurement of intestinal absorption of calcium in man. Journal of Laboratory and Clinical Medicine 66, 822829.
Department of Health (1991) Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. Report on Health and Social Subjects no. 41. London: HM Stationery Office.
Department of Health (1972) Food Composition Table for Use in South East Asia. Bethesda, Md: Department of Health, Education and Welfare.
Eastell, R., Vieira, N. E., Yergey, A. L. & Riggs, L. (1989) One-day test using stable isotopes to measure true fractional calcium absorption. Journal of Bone and Mineral Research 4, 463468.
Fairweather-Tait, S. J., Johnson, A., Eagles, J., Ganatra, S., Kennedy, H. & Gurr, M. I. (1989) Studies on calcium absorption from milk using double-label stable isotope technique. British Journal of Nutrition 62, 379388.
Food and Agriculture Organization/World Health Organization Expert Group (1962) Calcium Requirements. FA0 Nutrition Meetings Report Series no. 230. Rome: FAO.
German Society of Nutrition (1991) Recommendations on Nutrient Intake, 5th revised ed. Frankfurt: German Society of Nutrition.
Grindulis, H., Scott, P. H. & Belton, N. R. (1986) Combined deficiency of iron and vitamin D in Asian toddlers. Archives of Disease in Childhood 61, 843848.
Heaney, R. P., Saville, P. D. & Recker, R. R. (1975) Calcium absorption as a function of calcium intake. Journal of Laboratory and Clinical Medicine 85, 881887.
Hegsted, D. M., Moscoso, I. & Carlos Collazos, C. H. (1952) A study of the minimum calcium requirements of adult. Journal of Nutrition 48, 181201.
Heumann, K. G. (1988) Isotope dilution mass spectrometry. In Inorganic Mass Spectrometry, pp. 301376 [Adams, F., Gijbels, R. and van Grieken, R., editors]. New York: J. Wiley & Sons.
Hillman, L. S., Tack, E., Covell, D. G., Vieira, N. E. & Yergey, A. L. (1988) Measurement of true calcium absorption in premature infants using intravenous 46Ca and oral 44Ca. Pediatric Research 23, 589594.
Ho, Z. C. (1988) Prevalence of nutritional problems in infants and preschool children in China. In Proceedings of the Second International Symposium on Maternal and Infant Nutrition, pp. E5455 [Yeung, D. L. and Ho, Z. C., editors]. Guangzhou: Heinz Institute of Nutritional Sciences.
Institute of Health (1980) Food Composition Table. Chinese Academy of Medical Sciences. Beijing: Chinese People's Health Publishing Co.
Jain, M. G. (1989) Diet history: questionnaire and interview techniques used in some retrospective studies of cancer. Journal of the American Dietetic Association 89, 16471652.
Lee, W. T. K., Leung, S. S. F., Lui, S. S. H. & Lau, J. (1993 a) Relationship between long-term calcium intake and bone mineral content of children aged from birth to 5 years. British Journal of Nutrition 70, 235248.
Lee, W. T. K., Leung, S. S. F., Ng, M. Y., Wang, S. F., Xu, Y. C., Zeng, W. P. & Lau, J. (1993 b) Bone mineral content of two populations of Chinese children with different calcium intakes. Bone and Mineral 23, 195206.
Leung, S. S. F. & Lui, S. S. H. (1990) Nutritive value of Hongkong Chinese weaning diet. Nutrition Research 10, 707715.
Leung, S. S. F., Lui, S. & Swaminathan, R. (1989) Vitamin D status of Hongkong Chinese infants. Acta Paediatrica Scandinavica 78, 303306.
Leung, S. S. F., Wu, M. Y., Yeung, W. M., Wong, C. K. & Pang, C. P. (1993) Prevalence of nutritional rickets in infants of Quangzhou: accuracy of diagnosing rickets basing on clinical features alone. Hong Kong Journal of Paediatrics 9, 229232.
Marr, J. W. (1971) Individual dietary surveys: purposes and methods. World Review of Nutrition and Dietetics 13, 105164.
Matkovic, V. (1991) Calcium metabolism and calcium requirements during skeletal modelling and consolidation of bone mass. American Journal of Clinical Nutrition 54, 245S260S.
Matkovic, V. (1992) Calcium and peak bone mass. Journal of Internal Medicine 231, 151160.
Matkovic, V., Fontana, D., Tominac, C., Goel, P. & Chesnut, C. H. III. (1990) Factors that influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. American Journal of Clinical Nutrition 52, 878888.
Miller, J. Z., Smith, D. L., Flora, L., Slemenda, C. & Jiang, X. (1988) Calcium absorption from calcium carbonate and a new form of calcium (CCM) in healthy male and female adolescents. American Journal of Clinical Nutrition 48, 12911294.
Moore, L. J. (1984) Stable isotope measurements with thermal and resonance ionisation mass spectrometry. In Stable Isotopes in Nutrition, pp. 126 [Turnlund, J.R. and Johnson, P. E., editors]. Washington, DC: American Chemical Society.
Mueller, T. R. & Walker, R. L. (1987) Isotopic determination of calcium by thermal ionisation using a VG 354 mass spectrometer. Proceedings of the 35th ASMS Conference on Mass Spectrometry and Allied Topics, p. 993. Denver, CO: ASMS.
National Research Council (1989) Food and Nutrition Board: Recommended Dietary Allowances, 10th ed. Washington, DC: National Academy Press.
Nicholls, L. & Nimalasuriya, A. (1939) Adaptation to a low calcium intake in reference to the calcium requirements of a tropical population. Journal of Nutrition 18, 563577.
Nordin, B. E. C.(editor) (1976) Plasma calcium and plasma magnesium homeostasis. In Calcium, Phosphate and Magnesium Metabolism, pp. 186216. Edinburgh: Churchill Livingstone.
Norman, A. W. (1990) Intestinal calcium absorption: a vitamin D-hormone-mediated adaptive response. American Journal of Clinical Nutrition 51, 290300.
Norman, D. A., Fordtran, J. S., Brinkley, J., Zerwekh, J. E., Nicar, M. J., Strowig, S. M. & Pak, C. Y. C. (1981) Jejunal and ileal adaptation to alterations in dietary calcium. Journal of Clinical Investigation 67, 15991603.
Paul, A. A. & Southgate, D. A. T. (1978) McCance and Widdowson's the Composition of Foods, 4th revised ed. London: HM Stationery Office.
Recker, R. R., Bammi, A., Barger-Lux, M. & Heaney, R. P. (1988) Calcium absorbability from milk products, an imitation milk, and calcium carbonate. American Journal of Clinical Nutrition 47, 9395.
Roth, P. & Werner, E. (1985) Interrelationship of radiocalcium absorption tests and their clinical reference. Mineral and Electrolyte Metabolism 11, 351357.
Smith, K. T., Heaney, R. P., Flora, L. & Hinders, S. M. (1987) Calcium absorption from calcium citrate-malate. Calcified Tissues International 41, 351352.
Tackett, J. R. & Ellefson, R. E. (1987) Isotopic analysis of calcium. Proceedings of the 35th ASMS Conference on Mass Spectrometry and Allied Topics, Abstr. Denver, CO: ASMS.
Tung, T. C., Huang, P. C. & Li, H. C. (1961) Composition of foods used in Taiwan. Journal of the Formosan Medical Association 60, 9731005.
Watt, B. K. & Merrill, H. L. (1983) Composition of Foods. Agriculture Handbook no. 8. Washington, DC: Department of Agriculture.
Woo, J., Swaminathan, R., Pang, C. P., Mak, Y. T. & MacDonald, D. (1990) A comparison of biochemical indices of bone turnover in elderly institutionalised and free-living subjects. Bone and Mineral 8, 3138.
Yergey, A. L., Vieira, N. E. & Covell, D. G. (1987) Direct measurement of dietary functional absorption using calcium isotopic tracers. Biochemical and Environmental Mass Spectrometry 14, 603607.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed