Skip to main content Accessibility help
×
Home

Serum 25-hydroxyvitamin D concentrations and cardiometabolic risk factors in adolescents and young adults

  • Lucinda J. Black (a1) (a2), Sally Burrows (a3), Robyn M. Lucas (a4), Carina E. Marshall (a3), Rae-Chi Huang (a1), Wendy Chan She Ping-Delfos (a3), Lawrence J. Beilin (a3), Patrick G. Holt (a1) (a5), Prue H. Hart (a1), Wendy H. Oddy (a1) (a6) and Trevor A. Mori (a3)...

Abstract

Evidence associating serum 25-hydroxyvitamin D (25(OH)D) concentrations and cardiometabolic risk factors is inconsistent and studies have largely been conducted in adult populations. We examined the prospective associations between serum 25(OH)D concentrations and cardiometabolic risk factors from adolescence to young adulthood in the West Australian Pregnancy Cohort (Raine) Study. Serum 25(OH)D concentrations, BMI, homoeostasis model assessment for insulin resistance (HOMA-IR), TAG, HDL-cholesterol and systolic blood pressure (SBP) were measured at the 17-year (n 1015) and 20-year (n 1117) follow-ups. Hierarchical linear mixed models with maximum likelihood estimation were used to investigate associations between serum 25(OH)D concentrations and cardiometabolic risk factors, accounting for potential confounders. In males and females, respectively, mean serum 25(OH)D concentrations were 73·6 (sd 28·2) and 75·4 (sd 25·9) nmol/l at 17 years and 70·0 (sd 24·2) and 74·3 (sd 26·2) nmol/l at 20 years. Deseasonalised serum 25(OH)D3 concentrations were inversely associated with BMI (coefficient −0·01; 95 % CI −0·03, −0·003; P=0·014). No change over time was detected in the association for males; for females, the inverse association was stronger at 20 years compared with 17 years. Serum 25(OH)D concentrations were inversely associated with log-HOMA-IR (coefficient −0·002; 95 % CI −0·003, −0·001; P<0·001) and positively associated with log-TAG in females (coefficient 0·002; 95 % CI 0·0008, 0·004; P=0·003). These associations did not vary over time. There were no significant associations between serum 25(OH)D concentrations and HDL-cholesterol or SBP. Clinical trials in those with insufficient vitamin D status may be warranted to determine any beneficial effect of vitamin D supplementation on insulin resistance, while monitoring for any deleterious effect on TAG.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Serum 25-hydroxyvitamin D concentrations and cardiometabolic risk factors in adolescents and young adults
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Serum 25-hydroxyvitamin D concentrations and cardiometabolic risk factors in adolescents and young adults
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Serum 25-hydroxyvitamin D concentrations and cardiometabolic risk factors in adolescents and young adults
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: L. Black, email lucinda.black@curtin.edu.au

References

Hide All
1. Hunter, DJ & Reddy, KS (2013) Noncommunicable diseases. N Engl J Med 369, 13361343.
2. Andersen, R, Molgaard, C, Skovgaard, LT, et al. (2005) Teenage girls and elderly women living in northern Europe have low winter vitamin D status. Eur J Clin Nutr 59, 533541.
3. Cashman, KD, Muldowney, S, McNulty, B, et al. (2012) Vitamin D status of Irish adults: findings from the national adult nutrition survey. Br J Nutr 109, 12481256.
4. Forrest, KY & Stuhldreher, WL (2011) Prevalence and correlates of vitamin D deficiency in US adults. Nutr Res 31, 4854.
5. Looker, AC, Johnson, CL, Lacher, DA, et al. (2011) Vitamin D status: United States, 2001–2006. NCHS Data Brief 59, 18.
6. Whiting, SJ, Langlois, KA, Vatanparast, H, et al. (2011) The vitamin D status of Canadians relative to the 2011 dietary reference intakes: an examination in children and adults with and without supplement use. Am J Clin Nutr 94, 128135.
7. Australian Bureau of Statistics (2014) Australian Health Survey: Biomedical Results for Nutrients. Canberra: Australian Bureau of Statistics.
8. Wang, Y, Zhu, J & DeLuca, HF (2012) Where is the vitamin D receptor? Arch Biochem Biophys 523, 123133.
9. Dirks-Naylor, AJ & Lennon-Edwards, S (2011) The effects of vitamin D on skeletal muscle function and cellular signaling. J Steroid Biochem Mol Biol 125, 159168.
10. Li, YC (2003) Vitamin D regulation of the renin-angiotensin system. J Cell Biochem 88, 327331.
11. Theodoratou, E, Tzoulaki, I, Zgaga, L, et al. (2014) Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ 348, g2035.
12. Newnham, JP, Evans, SF, Michael, CA, et al. (1993) Effects of frequent ultrasound during pregnancy: a randomised controlled trial. Lancet 342, 887891.
13. Maunsell, Z, Wright, DJ & Rainbow, SJ (2005) Routine isotope-dilution liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of the 25-hydroxy metabolites of vitamins D2 and D3 . Clin Chem 51, 16831690.
14. Matthews, DR, Hosker, JP, Rudenski, AS, et al. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412419.
15. Baghurst, KI & Record, SJ (1984) A computerised dietary analysis system for use with diet diaries or food frequency questionnaires. Community Health Stud 8, 1118.
16. Ireland, P, Jolley, D & Giles, GG (1994) Development of the Melbourne FFQ: a food frequency questionnaire for use in an Australian prospective study involving an ethnically diverse cohort. Asia Pac J Clin Nutr 3, 1931.
17. van der Mei, IA, Ponsonby, AL, Dwyer, T, et al. (2007) Vitamin D levels in people with multiple sclerosis and community controls in Tasmania, Australia. J Neurol 254, 581590.
18. Lucas, RM, Ponsonby, AL, Dear, K, et al. (2011) Sun exposure and vitamin D are independent risk factors for CNS demyelination. Neurology 76, 540548.
19. Gagnon, C, Lu, ZX, Magliano, DJ, et al. (2012) Low serum 25-hydroxyvitamin D is associated with increased risk of the development of the metabolic syndrome at five years: results from a national, population-based prospective study (The Australian Diabetes, Obesity and Lifestyle Study: AusDiab). J Clin Endocrinol Metab 97, 19531961.
20. Ganji, V, Zhang, X, Shaikh, N, et al. (2011) Serum 25-hydroxyvitamin D concentrations are associated with prevalence of metabolic syndrome and various cardiometabolic risk factors in US children and adolescents based on assay-adjusted serum 25-hydroxyvitamin D data from NHANES 2001–2006. Am J Clin Nutr 94, 225233.
21. Brenner, DR, Arora, P, Garcia-Bailo, B, et al. (2011) Plasma vitamin D levels and risk of metabolic syndrome in Canadians. Clin Invest Med 34, E377.
22. Buyukinan, M, Ozen, S, Kokkun, S, et al. (2012) The relation of vitamin D deficiency with puberty and insulin resistance in obese children and adolescents. J Pediatr Endocrinol Metab 25, 8387.
23. Kelly, A, Brooks, LJ, Dougherty, S, et al. (2011) A cross-sectional study of vitamin D and insulin resistance in children. Arch Dis Child 96, 447452.
24. Pacifico, L, Anania, C, Osborn, JF, et al. (2011) Low 25(OH)D3 levels are associated with total adiposity, metabolic syndrome, and hypertension in Caucasian children and adolescents. Eur J Endocrinol 165, 603611.
25. Nsiah-Kumi, PA, Erickson, JM, Beals, JL, et al. (2012) Vitamin D insufficiency is associated with diabetes risk in Native American children. Clin Pediatr (Phila) 51, 146153.
26. Hirschler, V, Maccallinni, G, Gilligan, T, et al. (2012) Association of vitamin D with insulin resistance in Argentine boys: a pilot study. J Pediatr Biochem 2, 9199.
27. Nam, GE, Kim, DH, Cho, KH, et al. (2012) 25-Hydroxyvitamin D insufficiency is associated with cardiometabolic risk in Korean adolescents: the 2008–2009 Korea National Health and Nutrition Examination Survey (KNHANES). Public Health Nutr 17, 186194.
28. Belenchia, AM, Tosh, AK, Hillman, LS, et al. (2013) Correcting vitamin D insufficiency improves insulin sensitivity in obese adolescents: a randomized controlled trial. Am J Clin Nutr 97, 774781.
29. Beilfuss, J, Berg, V, Sneve, M, et al. (2012) Effects of a 1-year supplementation with cholecalciferol on interleukin-6, tumor necrosis factor-alpha and insulin resistance in overweight and obese subjects. Cytokine 60, 870874.
30. Eftekhari, MH, Akbarzadeh, M, Dabbaghmanesh, MH, et al. (2011) Impact of treatment with oral calcitriol on glucose indices in type 2 diabetes mellitus patients. Asia Pac J Clin Nutr 20, 521526.
31. Harris, SS, Pittas, AG & Palermo, NJ (2012) A randomized, placebo-controlled trial of vitamin D supplementation to improve glycaemia in overweight and obese African Americans. Diabetes Obes Metab 14, 789794.
32. Mitri, J, Dawson-Hughes, B, Hu, FB, et al. (2011) Effects of vitamin D and calcium supplementation on pancreatic β cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am J Clin Nutr 94, 486494.
33. Nagpal, J, Pande, JN & Bhartia, A (2009) A double-blind, randomized, placebo-controlled trial of the short-term effect of vitamin D3 supplementation on insulin sensitivity in apparently healthy, middle-aged, centrally obese men. Diabet Med 26, 1927.
34. Nikooyeh, B, Neyestani, TR, Farvid, M, et al. (2011) Daily consumption of vitamin D- or vitamin D+ calcium-fortified yogurt drink improved glycemic control in patients with type 2 diabetes: a randomized clinical trial. Am J Clin Nutr 93, 764771.
35. Patel, P, Poretsky, L & Liao, E (2010) Lack of effect of subtherapeutic vitamin D treatment on glycemic and lipid parameters in type 2 diabetes: a pilot prospective randomized trial. J Diabetes 2, 3640.
36. Shab-Bidar, S, Neyestani, TR, Djazayery, A, et al. (2011) Regular consumption of vitamin D-fortified yogurt drink (Doogh) improved endothelial biomarkers in subjects with type 2 diabetes: a randomized double-blind clinical trial. BMC Med 9, 125.
37. von Hurst, PR, Stonehouse, W & Coad, J (2010) Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient – a randomised, placebo-controlled trial. Br J Nutr 103, 549555.
38. Witham, MD, Dove, FJ, Dryburgh, M, et al. (2010) The effect of different doses of vitamin D(3) on markers of vascular health in patients with type 2 diabetes: a randomised controlled trial. Diabetologia 53, 21122119.
39. Wood, AD, Secombes, KR, Thies, F, et al. (2012) Vitamin D3 supplementation has no effect on conventional cardiovascular risk factors: a parallel-group, double-blind, placebo-controlled RCT. J Clin Endocrinol Metab 97, 35573568.
40. Grimnes, G, Figenschau, Y, Almas, B, et al. (2011) Vitamin D, insulin secretion, sensitivity, and lipids: results from a case-control study and a randomized controlled trial using hyperglycemic clamp technique. Diabetes 60, 27482757.
41. Zhu, W, Cai, D, Wang, Y, et al. (2013) Calcium plus vitamin D3 supplementation facilitated fat loss in overweight and obese college students with very-low calcium consumption: a randomized controlled trial. Nutr J 12, 8.
42. Jain, R, von Hurst, PR, Stonehouse, W, et al. (2012) Association of vitamin D receptor gene polymorphisms with insulin resistance and response to vitamin D. Metabolism 61, 293301.
43. Skaaby, T, Husemoen, LL, Pisinger, C, et al. (2012) Vitamin D status and changes in cardiovascular risk factors: a prospective study of a general population. Cardiology 123, 6270.
44. Pilz, S, Gaksch, M, Kienreich, K, et al. (2015) Effects of vitamin D on blood pressure and cardiovascular risk factors: a randomized controlled trial. Hypertension 65, 11951201.
45. Zittermann, A, Frisch, S, Berthold, HK, et al. (2009) Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am J Clin Nutr 89, 13211327.
46. Challoumas, D (2014) Vitamin D supplementation and lipid profile: what does the best available evidence show? Atherosclerosis 235, 130139.
47. Wu, Y, Li, S & Zhang, D (2013) Circulating 25-hydroxyvitamin D levels and hypertension risk. Eur J Epidemiol 28, 611616.
48. Kunutsor, SK, Burgess, S, Munroe, PB, et al. (2014) Vitamin D and high blood pressure: causal association or epiphenomenon? Eur J Epidemiol 29, 114.
49. Geldenhuys, S, Hart, PH, Endersby, R, et al. (2014) Ultraviolet radiation suppresses obesity and symptoms of metabolic syndrome independently of vitamin D in mice fed a high-fat diet. Diabetes 63, 37593769.
50. Liu, D, Fernandez, BO, Hamilton, A, et al. (2014) UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase. J Invest Dermatol 134, 18391846.
51. Black, LJ, Anderson, D, Clarke, MW, et al. (2015) Analytical bias in the measurement of serum 25-hydroxyvitamin d concentrations impairs assessment of vitamin D status in clinical and research settings. PLOS ONE 10, e0135478.
52. Black, LJ, Burrows, SA, Jacoby, P, et al. (2014) Vitamin D status and predictors of serum 25-hydroxyvitamin D concentrations in Western Australian adolescents. Br J Nutr 112, 11541162.

Keywords

Type Description Title
PDF
Supplementary materials

Black supplementary material
Tables S1-S4

 PDF (174 KB)
174 KB

Serum 25-hydroxyvitamin D concentrations and cardiometabolic risk factors in adolescents and young adults

  • Lucinda J. Black (a1) (a2), Sally Burrows (a3), Robyn M. Lucas (a4), Carina E. Marshall (a3), Rae-Chi Huang (a1), Wendy Chan She Ping-Delfos (a3), Lawrence J. Beilin (a3), Patrick G. Holt (a1) (a5), Prue H. Hart (a1), Wendy H. Oddy (a1) (a6) and Trevor A. Mori (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed