Skip to main content Accessibility help
×
Home

The relationship between fermented food intake and mortality risk in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort

  • Jaike Praagman (a1) (a2), Geertje W. Dalmeijer (a1), Yvonne T. van der Schouw (a1), Sabita S. Soedamah-Muthu (a2), W. M. Monique Verschuren (a3), H. Bas Bueno-de-Mesquita (a3) (a4) (a5) (a6), Johanna M. Geleijnse (a2) and Joline W. J. Beulens (a1)...

Abstract

The objective of the present study was to investigate the relationship between total and subtypes of bacterial fermented food intake (dairy products, cheese, vegetables and meat) and mortality due to all causes, total cancer and CVD. From the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort, 34 409 Dutch men and women, aged 20–70 years who were free from CVD or cancer at baseline, were included. Baseline intakes of total and subtypes of fermented foods were measured with a validated FFQ. Data on the incidence and causes of death were obtained from the national mortality register. Cox proportional hazards models were used to analyse mortality in relation to the quartiles of fermented food intake. After a mean follow-up of 15 (sd 2·5) years, 2436 deaths occurred (1216 from cancer and 727 from CVD). After adjustment for age, sex, total energy intake, physical activity, education level, hypertension, smoking habit, BMI, and intakes of fruit, vegetables and alcohol, total fermented food intake was not found to be associated with mortality due to all causes (hazard ratio upper v. lowest quartile (HRQ4 v. Q1) 1·00, 95 % CI 0·88, 1·13), cancer (HRQ4 v. Q1 1·02, 95 % CI 0·86, 1·21) or CVD (HRQ4 v. Q1 1·04, 95 % CI 0·83, 1·30). Bacterial fermented foods mainly consisted of fermented dairy foods (78 %) and cheese (16 %). None of the subtypes of fermented foods was consistently related to mortality, except for cheese which was moderately inversely associated with CVD mortality, and particularly stroke mortality (HRQ4 v. Q1 0·59, 95 % CI 0·38, 0·92, P trend= 0·046). In conclusion, the present study provides no strong evidence that intake of fermented foods, particularly fermented dairy foods, is associated with mortality.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The relationship between fermented food intake and mortality risk in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The relationship between fermented food intake and mortality risk in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The relationship between fermented food intake and mortality risk in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: J. Praagman, fax +31 88 7568099, email j.praagman-2@umcutrecht.nl

References

Hide All
1 Campbell-Platt, G (1994) Fermented foods – a world perspective. Food Res Int 27, 253257.
2 FAO/WHO (2001) Report on Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. ftp://ftp.fao.org/es/esn/food/probio_report_en.pdf.
3 Elmadfa, I, Klein, P & Meyer, AL (2010) Immune-stimulating effects of lactic acid bacteria in vivo and in vitro . Proc Nutr Soc 69, 416420.
4 Olivares, M, Paz Diaz-Ropero, M, Gomez, N, et al. (2006) Dietary deprivation of fermented foods causes a fall in innate immune response. Lactic acid bacteria can counteract the immunological effect of this deprivation. J Dairy Res 73, 492498.
5 Kim, J, Kang, M, Lee, JS, et al. (2011) Fermented and non-fermented soy food consumption and gastric cancer in Japanese and Korean populations: a meta-analysis of observational studies. Cancer Sci 102, 231244.
6 Yan, L & Spitznagel, EL (2009) Soy consumption and prostate cancer risk in men: a revisit of a meta-analysis. Am J Clin Nutr 89, 11551163.
7 Dalmeijer, GW, Struijk, EA, van der Schouw, YT, et al. (2013) Dairy intake and coronary heart disease or stroke – a population-based cohort study. Int J Cardiol 167, 925929.
8 Kampman, E, Goldbohm, RA, van den Brandt, PA, et al. (1994) Fermented dairy products, calcium, and colorectal cancer in The Netherlands Cohort Study. Cancer Res 54, 31863190.
9 Keszei, AP, Schouten, LJ, Goldbohm, RA, et al. (2010) Dairy intake and the risk of bladder cancer in the Netherlands Cohort Study on Diet and Cancer. Am J Epidemiol 171, 436446.
10 Pala, V, Sieri, S, Berrino, F, et al. (2011) Yogurt consumption and risk of colorectal cancer in the Italian European Prospective Investigation into Cancer and Nutrition cohort. Int J Cancer 129, 27122719.
11 Goldbohm, RA, Chorus, AM, Galindo Garre, F, et al. (2011) Dairy consumption and 10-y total and cardiovascular mortality: a prospective cohort study in the Netherlands. Am J Clin Nutr 93, 615627.
12 van't Veer, P, Dekker, JM, Lamers, JW, et al. (1989) Consumption of fermented milk products and breast cancer: a case–control study in The Netherlands. Cancer Res 49, 40204023.
13 Aune, D, Lau, R, Chan, DS, et al. (2012) Dairy products and colorectal cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol 23, 3745.
14 Soedamah-Muthu, SS, Masset, G, Verberne, L, et al. (2013) Consumption of dairy products and associations with incident diabetes, CHD and mortality in the Whitehall II study. Br J Nutr 109, 718726.
15 Beulens, JW, Monninkhof, EM, Verschuren, WM, et al. (2010) Cohort profile: the EPIC-NL study. Int J Epidemiol 39, 11701178.
16 Ocke, MC, Bueno-de-Mesquita, HB, Goddijn, HE, et al. (1997) The Dutch EPIC food frequency questionnaire. I. Description of the questionnaire, and relative validity and reproducibility for food groups. Int J Epidemiol 26, Suppl. 1, S37S48.
17 Behnsen, J, Deriu, E, Sassone-Corsi, M, et al. (2013) Probiotics: properties, examples, and specific applications. Cold Spring Harb Perspect Med 3, a010074.
18 Hutkins, RW (2006) Starter cultures. In Microbiology and Technology of Fermented Foods, pp. 67106. Ames, IA: Blackwell Publishing.
19 Bamforth, CW (2005) Food, Fermentation and Micro-organisms, 1st ed. Oxford: Blackwell Publishing.
20 Wareham, NJ, Jakes, RW, Rennie, KL, et al. (2003) Validity and repeatability of a simple index derived from the short physical activity questionnaire used in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr 6, 407413.
21 Sluijs, I, Beulens, JW, van der, AD, et al. (2010) Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care 33, 4348.
22 Beulens, JW, van der Schouw, YT, Bergmann, MM, et al. (2012) Alcohol consumption and risk of type 2 diabetes in European men and women: influence of beverage type and body size The EPIC-InterAct study. J Intern Med 272, 358370.
23 Willett, WC, Howe, GR & Kushi, LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65, 1220S1228S (discussion 1229S–1231S).
24 Ocke, MC, Bueno-de-Mesquita, HB, Pols, MA, et al. (1997) The Dutch EPIC food frequency questionnaire. II. Relative validity and reproducibility for nutrients. Int J Epidemiol 26, Suppl. 1, S49S58.
25 Nagel, G, Zoller, D, Ruf, T, et al. (2007) Long-term reproducibility of a food-frequency questionnaire and dietary changes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heidelberg cohort. Br J Nutr 98, 194200.
26 Sonestedt, E, Wirfalt, E, Wallstrom, P, et al. (2011) Dairy products and its association with incidence of cardiovascular disease: the Malmo diet and cancer cohort. Eur J Epidemiol 26, 609618.
27 de Oliveira Otto, MC, Nettleton, JA, Lemaitre, RN, et al. (2013) Biomarkers of dairy fatty acids and risk of cardiovascular disease in the multi-ethnic study of atherosclerosis. J Am Heart Assoc 2, e000092.
28 Warensjo, E, Smedman, A, Stegmayr, B, et al. (2009) Stroke and plasma markers of milk fat intake – a prospective nested case–control study. Nutr J 8, 21.
29 Gast, GC, de Roos, NM, Sluijs, I, et al. (2009) A high menaquinone intake reduces the incidence of coronary heart disease. Nutr Metab Cardiovasc Dis 19, 504510.
30 Geleijnse, JM, Vermeer, C, Grobbee, DE, et al. (2004) Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr 134, 31003105.
31 Vissers, LE, Dalmeijer, GW, Boer, JM, et al. (2013) Intake of dietary phylloquinone and menaquinones and risk of stroke. J Am Heart Assoc 2, e000455.
32 Larsson, SC, Mannisto, S, Virtanen, MJ, et al. (2009) Dairy foods and risk of stroke. Epidemiology 20, 355360.
33 Larsson, SC, Virtamo, J & Wolk, A (2012) Dairy consumption and risk of stroke in Swedish women and men. Stroke 43, 17751780.

Keywords

Type Description Title
WORD
Supplementary materials

Praagman supplementary material
Tables S1-S3

 Word (120 KB)
120 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed