Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T01:38:57.178Z Has data issue: false hasContentIssue false

Nutritional adequacy of commercial food products targeted at 0–36-month-old children: a study in Brazil and Portugal

Published online by Cambridge University Press:  18 August 2022

Célia Regina Barbosa De Araújo*
Affiliation:
Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal Departamento de Nutrição da Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN, Brazil
Karini Freire Rocha
Affiliation:
Programa de Pós Graduação da Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN, Brazil
Byanca Carneiro
Affiliation:
Departamento de Nutrição da Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN, Brazil
Karla Danielly da Silva Ribeiro
Affiliation:
Programa de Pós Graduação da Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN, Brazil Departamento de Nutrição da Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN, Brazil
Inês Lança de Morais
Affiliation:
Division of Noncommunicable Diseases and Life Course of Nutrition, Physical Activity and Obesity Program, World Health Organization (WHO) Regional Office for Europe, Copenhagen, Denmark
João Breda
Affiliation:
Division of Country Health Policies and Systems, World Health Organization Regional Office for Europe, Copenhagen, Denmark EPIUnit – Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
Patrícia Padrão
Affiliation:
Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal EPIUnit – Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal Laboratório para a Investigação e Translacional em Saúde Populacional (ITR), Porto, Portugal
Pedro Moreira
Affiliation:
Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal EPIUnit – Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal Laboratório para a Investigação e Translacional em Saúde Populacional (ITR), Porto, Portugal Centro de Investigação em Atividade Física, Saúde e Lazer, Universidade do Porto, Porto, Portugal
*
* Corresponding author: Célia Regina Barbosa De Araújo, email celianut@hotmail.com

Abstract

In the context of the global childhood obesity, it is essential to monitor the nutrition value of commercial foods. A cross-sectional study (November 2018 to April 2019) aimed to evaluate the nutritional adequacy of processed/ultra-processed food products targeted at 0–36-month-old children in Portugal and in Brazil. The nutrient profiling model developed by the Pan American Health Organization was used. A total of food 171 products were assessed (123 in Portugal and forty eight in Brazil). From the fifteen available meat- or fish-based meals in Brazil, 60 % exceeded the amount of Na and 100 % exceeded the target for total fat. Given the lack of specification of sugars within carbohydrates in the label of the foods in Brazil, it was not possible to calculate free sugars. In Portugal, from the seventeen fruit and vegetable purees and the six juice/smoothie/tea/drinks available, 82 % and 67 %, respectively, surpassed the level of free sugar, while total and saturated fat was excessive in all yogurt and yogurt-related products (n 21), 40 % of biscuit/wafer/crisps (two out of five) and 13 % meat- or fish-based meals (two out of sixteen). These findings demonstrate the relevance of improving the nutritional profile of some food products targeted to young children.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araújo, C, Ribeiro, KD, Padrão, P, et al. (2019) Industrialized foods in early infancy: a growing need of nutritional research. Porto Biomed J 4, 47.CrossRefGoogle ScholarPubMed
Zigarti, PVR, Barata Junior, IS & Ferreira, JCS (2021) Childhood obesity: a problem in today’s society. Research Soc Dev 10, e29610616443.CrossRefGoogle Scholar
Deschasaux, M, Huybrechts, I, Julia, C, et al. (2020) Association between nutritional profiles of foods underlying Nutri-Score front-of-pack labels and mortality: EPIC cohort study in 10 European countries. BMJ 370, m3173.CrossRefGoogle ScholarPubMed
Grammatikaki, E, Wollgast, J & Caldeira, S (2021) High levels of nutrients of concern in baby foods available in Europe that contain sugar-contributing ingredients or are ultra-processed. Nutrients 13, 3105.CrossRefGoogle ScholarPubMed
Lopes, WC, Pinho, LD, Caldeira, AP, et al. (2020) Consumption of ultra-processed foods by children under 24 months of age and associated factors. Rev Paulista de Pediatria 38, e2018277.CrossRefGoogle ScholarPubMed
Bridge, G, Lomazzi, M, Santoso, CMA, et al. (2021) Analysis of the labelling of a sample of commercial foods for infants and young children in 13 countries. J Public Health Policy 42, 390401.CrossRefGoogle ScholarPubMed
World Health Organization (2019) Commercial Foods for Infants and Young Children in the WHO European Region: A Study of the Availability, Composition and Marketing of Baby Foods in Four European Countries. Copenhagen, Denmark: WHO Regional Office for Europe.Google Scholar
The Commission of the European Communities (2006) Commission Directive 2006/125/EC on Processed Cereal-Based Foods and Baby Foods for Infants and Young Children. O. J. E. U. L 339:16–35. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006L0125&from=EN (accessed March 2020).Google Scholar
World Health Organization (2017) Guidance on Ending the Inappropriate Promotion of Foods for Infants and Young Children: Implementation Manual. Geneva: WHO.Google Scholar
Rêgo, C, Lopes, C, Durão, C, et al. (2019) Manual ‘Alimentação Saudável dos 0 aos 6 anos -Linhas de Orientação para Profissionais e Educadores’ (Healthy eating for 0-6-month-old children: Guidelines for practitioners and educators). https://nutrimento.pt/activeapp/wp-content/uploads/2019/10/Alimentac%CC%A7a%CC%83o-Sauda%CC%81vel-dos-0-aos-6-anos.-pdf.pdf (accessed May 2022).Google Scholar
Brasil. Ministério da Saúde (Brazil. Ministry of Health) (2019) Secretaria de Atenção Primaria à Saúde. Departamento de Promoção da Saúde. Guia alimentar para crianças brasileiras menores de 2 anos (Primary Health Care Secretariat. Department of Health Promotion. Brazilian dietary guidelines for children under 2 years old). Brasília: Ministry of Health. https://www.svb.org.br/images/guia_da_crianca_2019.pdf (accessed January 2022).Google Scholar
Evangelia, G, Jan, W & Sandra, C (2019) Feeding infants and young children. A compilation of national food-based dietary guidelines and specific products available in the EU market; PUBSY No. 115583. https://ec.europa.eu/jrc/ (accessed January 2022).Google Scholar
Sullivan, SA & Birch, LL (1990) Pass the sugar, pass the salt: experience dictates preference. Dev Psychol, 26, 546551.CrossRefGoogle Scholar
Tavares, GA, do Amaral Almeida, LC, de Souza, JA, et al. (2020) Early weaning disrupts feeding patterns in female juvenile rats through 5HT-system modulations. Behav Processes 170, 103981.CrossRefGoogle ScholarPubMed
Soares, NR & Nunes, TP (2021) Assessment of the conformity of dairy product labels against current legislation and consumer perception of labeling. Res Soc Dev 10, e24110313223.CrossRefGoogle Scholar
Souza, A, Silva, FTA, Santos, E, et al. (2018) Functional food labeling: information analysis. Rev Higiene Alimentar 32, 121126.Google Scholar
Patzlaff, MEB & Melo, SSM (2020) Nutritional information on industrialized food labels in relation to the nutritional need of preschoolers. Braz J Health Rev 6, 1795217965.CrossRefGoogle Scholar
Contreras-Manzano, A, Jáuregui, A, Velasco-Bernal, A, et al. (2018) Comparative analysis of the classification of food products in the Mexican market according to seven different nutrient profiling systems. Nutrients 10, 737.CrossRefGoogle ScholarPubMed
World Health Organization (2015) WHO Regional Office for Europe Nutrient Profile Model. Geneva: WHO.Google Scholar
Pan American Health Organization (2016) PAHO Nutrient Profile Model. Washington, DC: Pan American Health Organization.Google Scholar
Brazilian Institute of Geography (2018) Statistics and Maps. https://mapas.ibge.gov.br/bases-e-referenciais/bases-cartograficas/malhas-digitais (accessed February 2018).Google Scholar
Páginas Amarelas Marketplace (2020) The Best Professionals in Portugal. http://www.pai.pt/ (accessed October 2019).Google Scholar
Prefeitura do Natal (Natal’s Town Hall) (2017) Conheça Melhor Seu Bairro. Região Administrativa Oeste, Norte, Sul, Leste (Know your neighborhood better. Administrative Region West, North, South, East). https://www.prefeitura.natal.br/sempla/conheca (accessed November 2018).Google Scholar
Agência Nacional de Vigilância Sanitária (Brazilian Health Regulatory Agency) (2020) Resolução da Diretoria Colegiada – RDC n° 429, de 08 de outubro de 2020 (Resolution of the Collegiate Board of Directors - RDC n° 429, of October 8, 2020). Brasília, DF: ANVISA. http://antigo.anvisa.gov.br/documents/10181/3882585/RDC_429_2020_.pdf/9dc15f3a-db4c-4d3f-90d8-ef4b80537380 (accessed January 2022).Google Scholar
Agência Nacional de Vigilância Sanitária (Brazilian Health Regulatory Agency) (2019) Resolução da Diretoria Colegiada – RDC n° 332, de 23 de dezembro de 2019 (Resolution of the Collegiate Board of Directors - RDC n° 332, of December 23, 2019). Brasília, DF: ANVISA. http://www.cvs.saude.sp.gov.br/zip/U_RS-MS-ANVISA-RDC-332_231219.pdf (accessed January 2022).Google Scholar
European Commission (2019) Regulamento (UE) n° 2019/649 da Comissão, de 24 de abril de (Regulation (UE) n° 2019/649 of the European commision, of April 24, 2019). https://ec.europa.eu/food/safety/labelling-and-nutrition/trans-fat-food_en (accessed January 2022).Google Scholar
Hutchinson, J, Rippin, H, Threapleton, D, et al. (2021) High sugar content of European commercial baby foods and proposed updates to existing recommendations. Matern Child Nutr 17, e13020.CrossRefGoogle ScholarPubMed
Anastácio, COA, Oliveira, JM, Moraes, MM, et al. (2020) Nutritional profile of ultra-processed foods consumed by children in Rio de Janeiro. Rev Saúde Pública 54, 89.CrossRefGoogle ScholarPubMed
Maalouf, J, Cogswell, ME, Bates, M, et al. (2017) Sodium, sugar, and fat content of complementary infant and toddler foods sold in the United States, 2015. Am J Clin Nutr 105, 14431452.CrossRefGoogle Scholar
da Rocha, KF, de Araújo, CR, de Morais, IL, et al. (2021) Commercial foods for infants under the age of 36 months: an assessment of the availability and nutrient profile of ultra-processed foods. Public Health Nutr 24, 31793186.CrossRefGoogle ScholarPubMed
Vedovato, GM, Trude, ACB, Kharmats, AY, et al. (2015) Degree of food processing of household acquisition patterns in a Brazilian urban area is related to food buying preferences and perceived food environment. Appetite 87, 296302.CrossRefGoogle Scholar
de Araújo, CRB, Ribeiro, KDDS, Oliveira, AF, et al. (2021) Degree of processing and nutritional value of children’s food products. Public Health Nutr 24, 59775984.CrossRefGoogle Scholar
Maslin, K & Venter, C (2017) Nutritional aspects of commercially prepared infant foods in developed countries: a narrative review. Nutr Res Rev 30, 138148.CrossRefGoogle ScholarPubMed
Neri, D, Martinez-Steele, E, Monteiro, CA, et al. (2019) Consumption of ultra-processed foods and its association with added sugar content in the diets of US children, NHANES 2009–2014. Pediatr Obes 14, e12563.CrossRefGoogle ScholarPubMed
EFSA (2010) Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J 8, 1461.Google Scholar
Fewtrell, M, Bronsky, J, Campoy, C, et al. (2017) Complementary feeding: a position paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) committee on nutrition. J Pediatr Gastroenterol Nutr 64, 119132.CrossRefGoogle ScholarPubMed
World Health Organization (2013) Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020. Geneva: World Health Organization.Google Scholar
Costa, CS, Rauber, F, Leffa, PS, et al. (2019) Ultra-processed food consumption and its effects on anthropometric and glucose profile: a longitudinal study during childhood. Nutr Metab Cardiovasc Dis 29, 177184.CrossRefGoogle ScholarPubMed
Afshin, A, Sur, PJ, Fay, KA, et al. (2019) Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 393, 19581972.CrossRefGoogle Scholar
Vedovato, GM, Vilela, S, Severo, M, et al. (2021) Ultra-processed food consumption, appetitive traits and bmi in children: a prospective study. Br J Nutr 125, 14271436 CrossRefGoogle ScholarPubMed
World Health Organization (2015) Guideline: Sugars Intake for Adults and Children. Geneva: World Health Organization.Google Scholar
Di Cesare, M, Sorić, M, Bovet, P, et al. (2019) The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC Med 17, 212.CrossRefGoogle ScholarPubMed
Childhood Obesity Surveillance Initiative COSI Portugal- 2019. https://www.insa.min-saude.pt/wp-content/uploads/2019/07/COSI2019_FactSheet.pdf (accessed May 2021).Google Scholar
Ferreira, CM, Reis, NDD, Castro, AO, et al. (2021) Prevalence of childhood obesity in Brazil: systematic review and meta-analysis. J Pediatr 97, 490499.CrossRefGoogle ScholarPubMed
Deal, BJ, Huffman, MD, Binns, H, et al. (2020) Perspective: childhood obesity requires new strategies for prevention. Adv Nutr 11, 10711078.CrossRefGoogle ScholarPubMed