Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T21:36:52.257Z Has data issue: false hasContentIssue false

Association of disaster-related damage with inflammatory diet among older survivors of the Great East Japan Earthquake and Tsunami

Published online by Cambridge University Press:  23 January 2024

Aki Yazawa*
Affiliation:
Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
Hiroyuki Hikichi
Affiliation:
Division of Public Health, Kitasato University School of Medicine, Kanagawa, Japan
Koichiro Shiba
Affiliation:
Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
Sakurako Shiba Okuzono
Affiliation:
Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
Katsunori Kondo
Affiliation:
Department of Social Preventive Medical Sciences, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan Department of Gerontological Evaluation, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
Satoshi Sasaki
Affiliation:
Department of Social and Preventive Epidemiology, School of Public Health, The University of Tokyo, Tokyo, Japan
Ichiro Kawachi
Affiliation:
Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
*
*Corresponding author: Aki Yazawa, email aki.yazawa@gmail.com

Abstract

Traumatic experiences from disasters have enduring effects on health, both directly and indirectly by influencing health behaviours. Among potential pathways, the impact of disaster-related trauma on dietary patterns has been understudied. This study investigated the relationship between disaster-related trauma and dietary inflammatory index (DII®), and how these relationships differed by gender and whether they prepare meal by themselves or not among older survivors of the 2011 Great East Japan Earthquake and Tsunami (n 1375). Dietary data were collected in 2020 using a brief-type self-administered diet history questionnaire, from which we derived a dietary inflammatory index (DII®) based on twenty-six food/nutrient items, where higher scores indicate pro-inflammatory (i.e. unhealthy) diet. We found that the experience of housing damage due to the earthquake and tsunami was associated with slightly higher DII scores (coef. = 0·38, 95 % CI −0·05, 0·81). Specifically, women who cooked by themselves tended to have higher DII when they experienced housing damage (coef. = 1·33, 95 %CI −0·63, 3·28). On the other hand, loss of friends was associated with a lower DII score (coef. = −0·28, 95 % CI −0·54, −0·01). These findings highlight the importance of providing support to groups who are at increased risk of deterioration in dietary quality in the aftermath of disasters.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goldmann, E & Galea, S (2014) Mental health consequences of disasters. Annu Rev Public Health 35, 169183.CrossRefGoogle ScholarPubMed
Rubeis, VD, Lee, J, Anwer, MS, et al. (2021) Impact of disasters, including pandemics, on cardiometabolic outcomes across the life-course: a systematic review. BMJ Open 11, e047152.CrossRefGoogle ScholarPubMed
Whitaker, RC, Phillips, SM, Orzol, SM, et al. (2007) The association between maltreatment and obesity among preschool children. Child Abuse Negl 31, 11871199.CrossRefGoogle ScholarPubMed
Jia, Z, Tian, W, Liu, W, et al. (2010) Are the elderly more vulnerable to psychological impact of natural disaster? A population-based survey of adult survivors of the 2008 Sichuan earthquake. BMC Public Health 10, 172.CrossRefGoogle ScholarPubMed
Abbasalizad Farhangi, M, Dehghan, P & Jahangiry, L (2018) Mental health problems in relation to eating behavior patterns, nutrient intakes and health related quality of life among Iranian female adolescents. PLoS One 13, e0195669.CrossRefGoogle ScholarPubMed
Payne, ME, Steck, SE, George, RR, et al. (2012) Fruit, vegetable, and antioxidant intakes are lower in older adults with depression. J Acad Nutr Diet 112, 20222027.CrossRefGoogle ScholarPubMed
Mohamad, O, Sabbah, HA, Smail, L, et al. (2022) Food Consumption Frequency, Perceived Stress, and Depressive Symptoms Among Female University Students in Dubai, United Arab Emirates. Frontiers in Sustainable Food Systems 6.Google Scholar
Zellner, DA, Loaiza, S, Gonzalez, Z, et al. (2006) Food selection changes under stress. Physiol Behav 87, 789793.CrossRefGoogle ScholarPubMed
Yazawa, A, Shiba, K, Hikichi, H, et al. (2023) Post-disaster mental health and dietary patterns among older survivors of an earthquake and Tsunami. J Nutr Health Aging 27, 124133.CrossRefGoogle Scholar
Rosenbloom, CA & Whittington, FJ (1993) The effects of bereavement on eating behaviors and nutrient intakes in elderly widowed persons. J Gerontol 48, S223229.CrossRefGoogle ScholarPubMed
Shahar, DR, Schultz, R, Shahar, A, et al. (2001) The effect of widowhood on weight change, dietary intake, and eating behavior in the elderly population. J Aging Health 13, 189199.CrossRefGoogle ScholarPubMed
Shifflett, PA & McIntosh, WA (1987) Food habits and future time: an exploratory study of age-appropriate food habits among the elderly. Int J Aging Hum Dev 24, 117.CrossRefGoogle Scholar
Walker, D & Beauchene, RE (1991) The relationship of loneliness, social isolation, and physical health to dietary adequacy of independently living elderly. J Am Diet Assoc 91, 300304.CrossRefGoogle ScholarPubMed
Hikichi, H, Aida, J, Kondo, K, et al. (2019) Residential relocation and obesity after a natural disaster: a natural experiment from the 2011 Japan Earthquake and Tsunami. Sci Rep 9, 111.CrossRefGoogle Scholar
Shiba, K, Hanazato, M, Aida, J, et al. (2020) Cardiometabolic profiles and change in neighborhood food and built environment among older adults: a natural experiment. Epidemiol 31, 758767.CrossRefGoogle ScholarPubMed
Stromsnes, K, Correas, AG, Lehmann, J, et al. (2021) Anti-inflammatory properties of diet: role in healthy aging. Biomedicines 9, 922.CrossRefGoogle ScholarPubMed
Chen, G-Q, Peng, C-L, Lian, Y, et al. (2021) Association between dietary inflammatory index and mental health: a systematic review and dose–response meta-analysis. Front Nutr 8, 662357.CrossRefGoogle ScholarPubMed
Lucas, M, Chocano-Bedoya, P, Shulze, MB, et al. (2014) Inflammatory dietary pattern and risk of depression among women. Brain, Behav, Immun 36, 4653.CrossRefGoogle ScholarPubMed
Sánchez-Villegas, A, Ruíz-Canela, M, Fuente-Arrillaga, C, et al. (2015) Dietary inflammatory index, cardiometabolic conditions and depression in the Seguimiento Universidad de Navarra cohort study. Br J Nutr 114, 14711479.CrossRefGoogle ScholarPubMed
Tomata, Y, Shivappa, N, Zhang, S, et al. (2018) Dietary inflammatory index and disability-free survival in community-dwelling older adults. Nutrients 10, 1896.CrossRefGoogle ScholarPubMed
Kim, D & Park, Y (2018) Association between the dietary inflammatory index and risk of frailty in older individuals with poor nutritional status. Nutrients 10, E1363.CrossRefGoogle ScholarPubMed
Ruiz-Canela, M, Bes-Rastrollo, M & Martínez-González, MA (2016) The role of dietary inflammatory index in cardiovascular disease, metabolic syndrome and mortality. Int J Mol Sci 17, E1265.CrossRefGoogle ScholarPubMed
Shivappa, N, Godos, J, Hébert, JR, et al. (2018) Dietary inflammatory index and cardiovascular risk and mortality-a meta-analysis. Nutrients 10, E200.CrossRefGoogle ScholarPubMed
Garcia-Arellano, A, Ramallal, R, Ruiz-Canela, M, et al. (2015) Dietary inflammatory index and incidence of cardiovascular disease in the PREDIMED Study. Nutrients 7, 41244138.CrossRefGoogle ScholarPubMed
Hayden, KM, Beavers, DP, Steck, SE, et al. (2017) The association between an inflammatory diet and global cognitive function and incident dementia in older women: the Women’s Health Initiative Memory Study. Alzheimers Dement 13, 11871196.CrossRefGoogle ScholarPubMed
Shivappa, N, Blair, CK, Prizment, AE, et al. (2016) Association between inflammatory potential of diet and mortality in the Iowa Women’s Health study. Eur J Nutr 55, 14911502.CrossRefGoogle ScholarPubMed
nippon.com (2019) Middle-Aged Japanese Men and Their Expectations of Homemade Meals. https://www.nippon.com/en/japan-data/h00499/middle-aged-japanese-men-and-their-expectations-of-homemade-meals.html (accessed February 2022).Google Scholar
Kondo, K, Rosenberg, M & Organization WH (2018) Advancing Universal Health Coverage through Knowledge Translation for Healthy Ageing: Lessons Learnt from the Japan Gerontological Evaluation Study. Geneva: World Health Organization.Google Scholar
Hikichi, H, Aida, J, Tsuboya, T, et al. (2016) Can community social cohesion prevent posttraumatic stress disorder in the aftermath of a disaster? A natural experiment from the 2011 Tohoku earthquake and tsunami. Am J Epidemiol 183, 902910.CrossRefGoogle Scholar
Sasaki, S, Yanagibori, R & Amano, K (1998) Self-administered diet history questionnaire developed for health education: a relative validation of the test-version by comparison with 3-day diet record in women. J Epidemiol 8, 203215.CrossRefGoogle ScholarPubMed
Kobayashi, S, Murakami, K, Sasaki, S, et al. (2011) Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr 14, 12001211.CrossRefGoogle ScholarPubMed
Kobayashi, S, Honda, S, Murakami, K, et al. (2012) Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J Epidemiol 22, 151159.CrossRefGoogle ScholarPubMed
Yatsuya, H, Ohwaki, A, Tamakoshi, K, et al. (2003) Reproducibility and validity of a simple checklist-type questionnaire for food intake and dietary behavior. J Epidemiol 13, 235245.CrossRefGoogle ScholarPubMed
National Institute of Health and Nutrition & Department of Nutritional Epidemiology (2010) Dietary Reference Intakes for Japanese. https://www.nibiohn.go.jp/en/files/Section_of_the_Dietary_Reference_Intakes/dris2010_eng.pdf (accessed May 2022).Google Scholar
Sheikh, JI & Yesavage, JA (1986) Geriatric Depression Scale (GDS): recent evidence and development of a shorter version. Clin Gerontologist: J Aging Mental Health 5, 165173.Google Scholar
Niino, N (1991) A Japanese translation of the Geriatric Depression Scale. Clin Gerontol 10, 8587.Google Scholar
Sugishita, K, Sugishita, M, Hemmi, I, et al. (2017) A validity and reliability study of the Japanese version of the geriatric depression scale 15 (GDS-15-J). Clin Gerontol 40, 233240.CrossRefGoogle ScholarPubMed
Fujii, S, Kato, H & Maeda, K (2008) A simple interview-format screening measure for disaster mental health: an instrument newly developed after the 1995 Great Hanshin Earthquake in Japan--the Screening Questionnaire for Disaster Mental Health (SQD). Kobe J Med Sci 53(6), 375–385.Google Scholar
Shivappa, N, Steck, SE, Hurley, TG, et al. (2014) Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr 17, 16891696.CrossRefGoogle ScholarPubMed
Shivappa, N, Stubbs, B, Hébert, JR, et al. (2018) The relationship between the dietary inflammatory index and incident frailty: a longitudinal cohort study. J Am Med Dir Assoc 19, 7782.CrossRefGoogle ScholarPubMed
Sterne, JAC, White, IR, Carlin, JB, et al. (2009) Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 338, b2393.CrossRefGoogle ScholarPubMed
Shiba, K, Hikichi, H, Aida, J, et al. (2019) Long-term associations between disaster experiences and cardiometabolic risk: a natural experiment from the 2011 Great East Japan Earthquake and Tsunami. Am J Epidemiol 188, 11091119.CrossRefGoogle Scholar
Khachadourian, V (2019) Effect of Earthquake-Related Losses and Post-Earthquake Events on Morbidity and Mortality: Causal Mediation Analysis of the Prospective Cohort Data of the 1988 Earthquake Survivors in Armenia. Los Angeles, CA: UCLA.Google Scholar
Stafford, M, Cummins, S, Macintyre, S, et al. (2005) Gender differences in the associations between health and neighbourhood environment. Soc Sci Med 60, 16811692.CrossRefGoogle ScholarPubMed
Wang, MC, Kim, S, Gonzalez, AA, et al. (2007) Socioeconomic and food-related physical characteristics of the neighbourhood environment are associated with body mass index. J Epidemiol Community Health 61, 491498.CrossRefGoogle ScholarPubMed
Tolin, DF & Foa, EB (2006) Sex differences in trauma and posttraumatic stress disorder: a quantitative review of 25 years of research. Psychol Bull 132, 959992.CrossRefGoogle ScholarPubMed
Yazawa, A, Aida, J, Kondo, K, et al. (2022) Gender differences in risk of posttraumatic stress symptoms after disaster among older people: differential exposure or differential vulnerability? J Affect Disord 297, 447454.CrossRefGoogle ScholarPubMed
Péneau, S, Ménard, E, Méjean, C, et al. (2013) Sex and dieting modify the association between emotional eating and weight status. Am J Clin Nutr 97, 13071313.CrossRefGoogle ScholarPubMed
Camilleri, GM, Méjean, C, Kesse-Guyot, E, et al. (2014) The associations between emotional eating and consumption of energy-dense snack foods are modified by sex and depressive symptomatology. J Nutr 144, 12641273.CrossRefGoogle ScholarPubMed
Konttinen, H, Männistö, S, Sarlio-Lähteenkorva, S, et al. (2010) Emotional eating, depressive symptoms and self-reported food consumption. A population-based study. Appetite 54, 473479.CrossRefGoogle ScholarPubMed
Crawford, GB, Khedkar, A, Flaws, JA, et al. (2011) Depressive symptoms and self-reported fast-food intake in midlife women. Prev Med 52, 254257.Google ScholarPubMed
Jeffery, RW, Linde, JA, Simon, GE, et al. (2009) Reported food choices in older women in relation to body mass index and depressive symptoms. Appetite 52, 238240.CrossRefGoogle ScholarPubMed
Phillips, CM, Shivappa, N, Hébert, JR, et al. (2018) Dietary inflammatory index and mental health: a cross-sectional analysis of the relationship with depressive symptoms, anxiety and well-being in adults. Clin Nutr 37, 14851491.CrossRefGoogle ScholarPubMed
O’Connor, DB, Jones, F, Conner, M, et al. (2008) Effects of daily hassles and eating style on eating behavior. Health Psychol 27, S20S31.CrossRefGoogle ScholarPubMed
Zhang, W, Ohira, T, Abe, M, et al. (2017) Evacuation after the Great East Japan Earthquake was associated with poor dietary intake: the Fukushima Health Management Survey. J Epidemiol 27, 1423.CrossRefGoogle ScholarPubMed
Noda, N, Ogawa, N, Kuji, R, et al. (2016) Dietary Changes Due to Relocation to Temporary Housing (in Japanese). Annual meeting of The Japan Society of Home Economics. Aichi, Japan. vol. 68, pp. 288.Google Scholar
Shiba, K, Kawahara, T, Aida, J, et al. (2021) Causal inference in studying the long-term health effects of disasters: challenges and potential solutions. Am J Epidemiol 190, 18671881.CrossRefGoogle ScholarPubMed
Pilgrim, A, Robinson, S, Sayer, AA, et al. (2015) An overview of appetite decline in older people. Nurs Older People 27, 2935.CrossRefGoogle ScholarPubMed
Fielding, RA, Vellas, B, Evans, WJ, et al. (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12, 249256.CrossRefGoogle ScholarPubMed
Kotronia, E, Brown, H, Papacosta, AO, et al. (2021) Poor oral health and the association with diet quality and intake in older people in two studies in the UK and USA. Br J Nutr 126, 118130.CrossRefGoogle ScholarPubMed
Supplementary material: File

Yazawa et al. supplementary material

Yazawa et al. supplementary material
Download Yazawa et al. supplementary material(File)
File 18.1 KB