Skip to main content Accessibility help

Association between edible mushroom intake and the prevalence of newly diagnosed non-alcoholic fatty liver disease: results from the Tianjin Chronic Low-Grade Systemic Inflammation and Health Cohort Study in China

  • Shunming Zhang (a1), Yeqing Gu (a1), Min Lu (a2), Jingzhu Fu (a1), Qing Zhang (a3), Li Liu (a3), Ge Meng (a1), Zhanxin Yao (a1) (a4), Hongmei Wu (a1), Xue Bao (a1), Shaomei Sun (a3), Xing Wang (a3), Ming Zhou (a3), Qiyu Jia (a3), Kun Song (a3), Yuntang Wu (a1) and Kaijun Niu (a1) (a3) (a5) (a6)...


Animal studies have suggested that mushroom intake can alleviate non-alcoholic fatty liver disease (NAFLD) due to its anti-inflammatory and antioxidant properties. However, the association between mushroom intake and NAFLD is unknown in humans. We aimed to investigate the association of mushroom intake with NAFLD among Chinese adults. This is a cross-sectional study of 24 236 adults (mean (standard deviation) age: 40·7 (sd 11·9) years; 11 394 men (47·0 %)). Mushroom intake was assessed via a validated FFQ. Newly diagnosed NAFLD was identified based on the results of annual health examinations, including ultrasound findings and a self-reported history of the disease. Multiple logistic models were used to examine the association between mushroom intake and NAFLD. The prevalence of newly diagnosed NAFLD was 19·0 %. Compared with those consuming mushrooms less frequently (≤1 time/week), the fully adjusted OR of newly diagnosed NAFLD were 0·95 (95 % CI 0·86, 1·05) for those consuming 2–3 times/week and 0·76 (95 % CI 0·63, 0·92) for those consuming ≥4 times/week (Pfor trend = 0·01). The inverse association was consistent in subgroups defined by age, sex and BMI. In conclusion, higher mushroom intake was significantly associated with lower prevalence of NAFLD among Chinese adults. Future research is required to understand the causal association between mushroom intake and NAFLD.


Corresponding author

*Corresponding author: Kaijun Niu, emails;


Hide All

These authors are the co-first authors and contributed equally to this work.



Hide All
1.Chalasani, N, Younossi, Z, Lavine, JE, et al. (2018) The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American association for the study of liver diseases. Hepatology 67, 328357.
2.Younossi, ZM, Koenig, AB, Abdelatif, D, et al. (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 7384.
3.Vernon, G, Baranova, A & Younossi, ZM (2011) Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 34, 274285.
4.Morrison, AE, Zaccardi, F, Khunti, K, et al. (2018) Causality between non-alcoholic fatty liver disease and risk of cardiovascular disease and type 2 diabetes: a meta-analysis with bias analysis. Liver Int 39, 557567.
5.Zhang, JJ, Li, Y, Zhou, T, et al. (2016) Bioactivities and health benefits of mushrooms mainly from China. Molecules 21, pii: E938.
6.Wang, XM, Zhang, J, Wu, LH, et al. (2014) A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chem 151, 279285.
7.Muszynska, B, Grzywacz-Kisielewska, A, Kala, K, et al. (2018) Anti-inflammatory properties of edible mushrooms: a review. Food Chem 243, 373381.
8.Kozarski, M, Klaus, A, Jakovljevic, D, et al. (2015) Antioxidants of edible mushrooms. Molecules 20, 1948919525.
9.Al Rifai, M, Silverman, MG, Nasir, K, et al. (2015) The association of nonalcoholic fatty liver disease, obesity, and metabolic syndrome, with systemic inflammation and subclinical atherosclerosis: the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 239, 629633.
10.Masarone, M, Rosato, V, Dallio, M, et al. (2018) Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev 2018, 9547613.
11.Iniguez, M, Perez-Matute, P, Villanueva-Millan, MJ, et al. (2018) Agaricus bisporus supplementation reduces high-fat diet-induced body weight gain and fatty liver development. J Physiol Biochem 74, 635646.
12.Nagao, K, Inoue, N, Inafuku, M, et al. (2010) Mukitake mushroom (Panellus serotinus) alleviates nonalcoholic fatty liver disease through the suppression of monocyte chemoattractant protein 1 production in db/db mice. J Nutr Biochem 21, 418423.
13.Shimizu, T, Mori, K, Ouchi, K, et al. (2018) Effects of dietary intake of Japanese mushrooms on visceral fat accumulation and gut microbiota in Mice. Nutrients 10, pii: E610.
14.Gu, Y, Li, H, Bao, X, et al. (2017) The relationship between Thyroid function and the prevalence of type 2 diabetes mellitus in Euthyroid subjects. J Clin Endocrinol Metab 102, 434442.
15.Wang, H, Gu, Y, Zheng, L, et al. (2018) Association between bedtime and the prevalence of newly diagnosed non-alcoholic fatty liver disease in adults. Liver Int 38, 22772286.
16.Farrell, GC, Chitturi, S, Lau, GK, et al. (2007) Guidelines for the assessment and management of non-alcoholic fatty liver disease in the Asia-Pacific region: executive summary. J Gastroenterol Hepatol 22, 775777.
17.Gao, X, Fan, JG & Study Group of Liver and Metabolism, Chinese Society of Endocrinology. (2013) Diagnosis and management of non-alcoholic fatty liver disease and related metabolic disorders: consensus statement from the Study Group of Liver and Metabolism, Chinese Society of Endocrinology. J Diabetes 5, 406415.
18.Prati, D, Taioli, E, Zanella, A, et al. (2002) Updated definitions of healthy ranges for serum alanine aminotransferase levels. Ann Intern Med 137, 110.
19.Ruhl, CE & Everhart, JE (2009) Elevated serum alanine aminotransferase and gamma-glutamyltransferase and mortality in the United States population. Gastroenterology 136, 477485.
20.Yang, Y (2009) China Food Composition, 2nd ed. Beijing, China: Peking University Medical Press.
21.Chobanian, AV, Bakris, GL, Black, HR, et al. (2003) The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 289, 25602572.
22.Alberti, KG, Eckel, RH, Grundy, SM, et al. (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 16401645.
23.Craig, CL, Marshall, AL, Sjostrom, M, et al. (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35, 13811395.
24.Xia, Y, Xiang, Q, Gu, Y, et al. (2018) A dietary pattern rich in animal organ, seafood and processed meat products is associated with newly diagnosed hyperuricaemia in Chinese adults: a propensity score-matched case–control study. Br J Nutr 119, 11771184.
25.Wehmeyer, MH, Zyriax, BC, Jagemann, B, et al. (2016) Nonalcoholic fatty liver disease is associated with excessive calorie intake rather than a distinctive dietary pattern. Medicine (Baltimore) 95, e3887.
26.Hu, FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13, 39.
27.Linder, K, Willmann, C, Kantartzis, K, et al. (2019) Dietary niacin intake predicts the decrease of liver fat content during a lifestyle intervention. Sci Rep 9, 1303.
28.Chen, M, Cheng, J, Wu, Q, et al. (2018) Prevalence, potential virulence, and genetic diversity of listeria monocytogenes isolates from edible mushrooms in Chinese markets. Front Microbiol 9, 1711.
29.Valverde, ME, Hernandez-Perez, T & Paredes-Lopez, O (2015) Edible mushrooms: improving human health and promoting quality life. Int J Microbiol 2015, 376387.
30.Jung, UJ & Choi, MS (2014) Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 15, 61846223.
31.Hsu, CH, Liao, YL, Lin, SC, et al. (2007) The mushroom Agaricus blazei Murill in combination with metformin and gliclazide improves insulin resistance in type 2 diabetes: a randomized, double-blinded, and placebo-controlled clinical trial. J Altern Complement Med 13, 97102.
32.Martel, J, Ojcius, DM, Chang, CJ, et al. (2017) Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nat Rev Endocrinol 13, 149160.
33.Zhang, S, Tomata, Y, Sugiyama, K, et al. (2017) Mushroom consumption and incident dementia in elderly Japanese: the Ohsaki Cohort 2006 Study. J Am Geriatr Soc 65, 14621469.
34.Brunt, EM, Wong, VW, Nobili, V, et al. (2015) Nonalcoholic fatty liver disease. Nat Rev Dis Primers 1, 15080.
35.Kim, D, Touros, A, Kim, WR (2018) Nonalcoholic fatty liver disease and metabolic syndrome. Clin Liver Dis 22, 133140.
36.Agoritsas, T, Merglen, A, Shah, ND, et al. (2017) Adjusted analyses in studies addressing therapy and harm: users’ guides to the medical literature. JAMA 317, 748759.


Related content

Powered by UNSILO

Association between edible mushroom intake and the prevalence of newly diagnosed non-alcoholic fatty liver disease: results from the Tianjin Chronic Low-Grade Systemic Inflammation and Health Cohort Study in China

  • Shunming Zhang (a1), Yeqing Gu (a1), Min Lu (a2), Jingzhu Fu (a1), Qing Zhang (a3), Li Liu (a3), Ge Meng (a1), Zhanxin Yao (a1) (a4), Hongmei Wu (a1), Xue Bao (a1), Shaomei Sun (a3), Xing Wang (a3), Ming Zhou (a3), Qiyu Jia (a3), Kun Song (a3), Yuntang Wu (a1) and Kaijun Niu (a1) (a3) (a5) (a6)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.