We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the existence of reducing subspaces for rank-one perturbations of diagonal operators and, in general, of normal operators of uniform multiplicity one. As we will show, the spectral picture will play a significant role in order to prove the existence of reducing subspaces for rank-one perturbations of diagonal operators whenever they are not normal. In this regard, the most extreme case is provided when the spectrum of the rank-one perturbation of a diagonal operator $T=D + u\otimes v$ (uniquely determined by such expression) is contained in a line, since in such a case $T$ has a reducing subspace if and only if $T$ is normal. Nevertheless, we will show that it is possible to exhibit non-normal operators $T=D + u\otimes v$ with spectrum contained in a circle either having or lacking non-trivial reducing subspaces. Moreover, as far as the spectrum of $T$ is contained in any compact subset of the complex plane, we provide a characterization of the reducing subspaces $M$ of $T$ such that the restriction $T\mid _M$ is normal. In particular, such characterization allows us to exhibit rank-one perturbations of completely normal diagonal operators (in the sense of Wermer) lacking reducing subspaces. Furthermore, it determines completely the decomposition of the underlying Hilbert space in an orthogonal sum of reducing subspaces in the context of a classical theorem due to Behncke on essentially normal operators.
Let
$C_{\||.\||}$
be an ideal of compact operators with symmetric norm
$\||.\||$
. In this paper, we extend the van Hemmen–Ando norm inequality for arbitrary bounded operators as follows: if f is an operator monotone function on
$[0,\infty)$
and S and T are bounded operators in
$\mathbb{B}(\mathscr{H}\;\,)$
such that
${\rm{sp}}(S),{\rm{sp}}(T) \subseteq \Gamma_a=\{z\in \mathbb{C} \ | \ {\rm{re}}(z)\geq a\}$
, then
We consider a robust class of random non-uniformly expanding local homeomorphisms and Hölder continuous potentials with small variation. For each element of this class we develop the thermodynamical formalism and prove the existence and uniqueness of equilibrium states among non-uniformly expanding measures. Moreover, we show that these equilibrium states and the random topological pressure vary continuously in this setting.
This article examines large-time behaviour of finite-state mean-field interacting particle systems. Our first main result is a sharp estimate (in the exponential scale) of the time required for convergence of the empirical measure process of the N-particle system to its invariant measure; we show that when time is of the order
$\exp\{N\Lambda\}$
for a suitable constant
$\Lambda > 0$
, the process has mixed well and it is close to its invariant measure. We then obtain large-N asymptotics of the second-largest eigenvalue of the generator associated with the empirical measure process when it is reversible with respect to its invariant measure. We show that its absolute value scales as
$\exp\{{-}N\Lambda\}$
. The main tools used in establishing our results are the large deviation properties of the empirical measure process from its large-N limit. As an application of the study of large-time behaviour, we also show convergence of the empirical measure of the system of particles to a global minimum of a certain ‘entropy’ function when particles are added over time in a controlled fashion. The controlled addition of particles is analogous to the cooling schedule associated with the search for a global minimum of a function using the simulated annealing algorithm.
We show that all self-adjoint extensions of semibounded Sturm–Liouville operators with limit-circle endpoint(s) can be obtained via an additive singular form-bounded self-adjoint perturbation of rank equal to the deficiency indices, say
$d\in \{1,2\}$
. This characterization generalizes the well-known analog for semibounded Sturm–Liouville operators with regular endpoints. Explicitly, every self-adjoint extension of the minimal operator can be written as
where
$\boldsymbol {A}_0$
is a distinguished self-adjoint extension and
$\Theta $
is a self-adjoint linear relation in
$\mathbb {C}^d$
. The perturbation is singular in the sense that it does not belong to the underlying Hilbert space but is form-bounded with respect to
$\boldsymbol {A}_0$
, i.e., it belongs to
$\mathcal {H}_{-1}(\boldsymbol {A}_0)$
, with possible “infinite coupling.” A boundary triple and compatible boundary pair for the symmetric operator are constructed to ensure that the perturbation is well defined and self-adjoint extensions are in a one-to-one correspondence with self-adjoint relations
$\Theta $
.
The merging of boundary triples with perturbation theory provides a more holistic view of the operator’s matrix-valued spectral measures: identifying not just the location of the spectrum, but also certain directional information.
As an example, self-adjoint extensions of the classical Jacobi differential equation (which has two limit-circle endpoints) are obtained, and their spectra are analyzed with tools both from the theory of boundary triples and perturbation theory.
We establish a theory of noncommutative (NC) functions on a class of von Neumann algebras with a particular direct sum property, e.g., $B({\mathcal H})$. In contrast to the theory’s origins, we do not rely on appealing to results from the matricial case. We prove that the $k{\mathrm {th}}$ directional derivative of any NC function at a scalar point is a k-linear homogeneous polynomial in its directions. Consequences include the fact that NC functions defined on domains containing scalar points can be uniformly approximated by free polynomials as well as realization formulas for NC functions bounded on particular sets, e.g., the NC polydisk and NC row ball.
Given a holomorphic self-map
$\varphi $
of
$\mathbb {D}$
(the open unit disc in
$\mathbb {C}$
), the composition operator
$C_{\varphi } f = f \circ \varphi $
,
$f \in H^2(\mathbb {\mathbb {D}})$
, defines a bounded linear operator on the Hardy space
$H^2(\mathbb {\mathbb {D}})$
. The model spaces are the backward shift-invariant closed subspaces of
$H^2(\mathbb {\mathbb {D}})$
, which are canonically associated with inner functions. In this paper, we study model spaces that are invariant under composition operators. Emphasis is put on finite-dimensional model spaces, affine transformations, and linear fractional transformations.
For any
$r\in [0,1]$
we give an example of a rigid operator whose spectrum is the annulus
$\{\lambda\in \mathbb{C} : r \le |\lambda| \le 1 \} $
. In particular, when
$r=0$
this operator is rigid and non-invertible, and when
$r\in {\kern1pt}] 0,1 [ $
this operator is invertible but its inverse is not rigid. This answers two questions of Costakis, Manoussos and Parissis [Recurrent linear operators. Complex Anal. Oper. Theory8 (2014), 1601–1643].
We study the classical Hermite–Hadamard inequality in the matrix setting. This leads to a number of interesting matrix inequalities such as the Schatten p-norm estimates
Let
$\mathcal {B}(\mathcal {H})$
be the algebra of all bounded linear operators on a complex Hilbert space
$\mathcal {H}$
. In this paper, we first establish several sharp improved and refined versions of the Bohr’s inequality for the functions in the class
$H^{\infty }(\mathbb {D},\mathcal {B}(\mathcal {H}))$
of bounded analytic functions from the unit disk
$\mathbb {D}:=\{z \in \mathbb {C}:|z|<1\}$
into
$\mathcal {B}(\mathcal {H})$
. For the complete circular domain
$Q \subset \mathbb {C}^{n}$
, we prove the multidimensional analogues of the operator valued Bohr-type inequality which can be viewed as a special case of the result by G. Popescu [Adv. Math. 347 (2019), 1002–1053] for free holomorphic functions on polyballs. Finally, we establish the multidimensional analogues of several improved Bohr’s inequalities for operator valued functions in Q.
We show that
$L_1(L_p) (1 < p < \infty )$
is primary, meaning that whenever
$L_1(L_p) = E\oplus F$
, where E and F are closed subspaces of
$L_1(L_p)$
, then either E or F is isomorphic to
$L_1(L_p)$
. More generally, we show that
$L_1(X)$
is primary for a large class of rearrangement-invariant Banach function spaces.
We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are based on appropriate reproducing formulas, they are compatible with standard functional calculi and they admit appropriate convergence lemmas and spectral mapping theorems. To achieve this, we develop the theory of associated function spaces in ways that are interesting and significant. As consequences of our calculi, we derive several well-known operator norm estimates and provide generalisations of some of them.
In this paper, we consider an eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary conditions. The location of eigenvalues on real axis, the structure of root subspaces and the oscillation properties of eigenfunctions of this problem are investigated, and asymptotic formulas for the eigenvalues and eigenfunctions are found. Next, by the use of these properties, we establish sufficient conditions for subsystems of root functions of the considered problem to form a basis in the space $L_p,1 < p < \infty$.
We establish a Wold-type decomposition for isometric and isometric Nica-covariant representations of the odometer semigroup. These generalize the Wold-type decomposition for commuting pairs of isometries due to Popovici and for pairs of doubly commuting isometries due to Słociński.
We study super weakly compact operators through a quantitative method. We introduce a semi-norm
$\sigma (T)$
of an operator
$T:X\to Y$
, where X, Y are Banach spaces, the so-called measure of super weak noncompactness, which measures how far T is from the family of super weakly compact operators. We study the equivalence of the measure
$\sigma (T)$
and the super weak essential norm of T. We prove that Y has the super weakly compact approximation property if and and only if these two semi-norms are equivalent. As an application, we construct an example to show that the measures of T and its dual
$T^*$
are not always equivalent. In addition we give some sequence spaces as examples of Banach spaces having the super weakly compact approximation property.
In the first part of the paper, we use states on $C^{*}$-algebras in order to establish some equivalent statements to equality in the triangle inequality, as well as to the parallelogram identity for elements of a pre-Hilbert $C^{*}$-module. We also characterize the equality case in the triangle inequality for adjointable operators on a Hilbert $C^{*}$-module. Then we give certain necessary and sufficient conditions to the Pythagoras identity for two vectors in a pre-Hilbert $C^{*}$-module under the assumption that their inner product has a negative real part. We introduce the concept of Pythagoras orthogonality and discuss its properties. We describe this notion for Hilbert space operators in terms of the parallelogram law and some limit conditions. We present several examples in order to illustrate the relationship between the Birkhoff–James, Roberts, and Pythagoras orthogonalities, and the usual orthogonality in the framework of Hilbert $C^{*}$-modules.
We continue our investigation of the real space H of Hermitian matrices in $${M_n}(\mathbb{C})$$ with respect to norms on $${\mathbb{C}^n}$$. We complete the commutative case by showing that any proper real subspace of the real diagonal matrices on $${\mathbb{C}^n}$$ can appear as H. For the non-commutative case, we give a complete solution when n=3 and we provide various illustrative examples for n ≥ 4. We end with a short list of problems.
The notions of chaos and frequent hypercyclicity enjoy an intimate relationship in linear dynamics. Indeed, after a series of partial results, it was shown by Bayart and Ruzsa in 2015 that for backward weighted shifts on $\ell _p(\mathbb {Z})$, the notions of chaos and frequent hypercyclicity coincide. It is with some effort that one shows that these two notions are distinct. Bayart and Grivaux in 2007 constructed a non-chaotic frequently hypercyclic weighted shift on $c_0$. It was only in 2017 that Menet settled negatively whether every chaotic operator is frequently hypercylic. In this article, we show that for a large class of composition operators on $L^{p}$-spaces, the notions of chaos and frequent hypercyclicity coincide. Moreover, in this particular class, an invertible operator is frequently hypercyclic if and only if its inverse is frequently hypercyclic. This is in contrast to a very recent result of Menet where an invertible operator frequently hypercyclic on $\ell _1$ whose inverse is not frequently hypercyclic is constructed.
Let $T = (T_1, \ldots , T_n)$ be a commuting tuple of bounded linear operators on a Hilbert space $\mathcal{H}$. The multiplicity of $T$ is the cardinality of a minimal generating set with respect to $T$. In this paper, we establish an additive formula for multiplicities of a class of commuting tuples of operators. A special case of the main result states the following: Let $n \geq 2$, and let $\mathcal{Q}_i$, $i = 1, \ldots , n$, be a proper closed shift co-invariant subspaces of the Dirichlet space or the Hardy space over the unit disc in $\mathbb {C}$. If $\mathcal{Q}_i^{\bot }$, $i = 1, \ldots , n$, is a zero-based shift invariant subspace, then the multiplicity of the joint $M_{\textbf {z}} = (M_{z_1}, \ldots , M_{z_n})$-invariant subspace $(\mathcal{Q}_1 \otimes \cdots \otimes \mathcal{Q}_n)^{\perp }$ of the Dirichlet space or the Hardy space over the unit polydisc in $\mathbb {C}^{n}$ is given by