We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a profinite group G of finite p-cohomological dimension and a pro-p quotient H of G by a closed normal subgroup N, we study the filtration on the Iwasawa cohomology of N by powers of the augmentation ideal in the group algebra of H. We show that the graded pieces are related to the cohomology of G via analogues of Bockstein maps for the powers of the augmentation ideal. For certain groups H, we relate the values of these generalized Bockstein maps to Massey products relative to a restricted class of defining systems depending on H. We apply our study to prove lower bounds on the p-ranks of class groups of certain nonabelian extensions of
$\mathbb {Q}$
and to give a new proof of the vanishing of Massey triple products in Galois cohomology.
The Hanna Neumann conjecture is a statement about the rank of the intersection of two finitely generated subgroups of a free group. The conjecture was posed by Hanna Neumann in 1957. In 2011, a strengthened version of the conjecture was proved independently by Joel Friedman and by Igor Mineyev. In this paper we show that the strengthened Hanna Neumann conjecture holds not only in free groups but also in non-solvable surface groups. In addition, we show that a retract in a free group and in a surface group is inert. This implies the Dicks–Ventura inertia conjecture for free and surface groups.
We show that the bicategory of finite groupoids and right-free permutation bimodules is a quotient of the bicategory of Mackey 2-motives introduced in [2], obtained by modding out the so-called cohomological relations. This categorifies Yoshida’s theorem for ordinary cohomological Mackey functors and provides a direct connection between Mackey 2-motives and the usual blocks of representation theory.
We show via
$\ell^2$
-homology that the rational homological dimension of a lattice in a product of simple simply connected Chevalley groups over global function fields is equal to the rational cohomological dimension and to the dimension of the associated Bruhat–Tits building.
We generalize results of Thomas, Allcock, Thom–Petersen, and Kar–Niblo to the first $\ell ^{2}$-Betti number of quotients of certain groups acting on trees by subgroups with free actions on the edge sets of the graphs.
Let $G$ be a finite group with cyclic Sylow $p$-subgroups, and let $k$ be a field of characteristic $p$. Then $H^{*}(BG;k)$ and $H_*(\Omega BG{{}^{{}^{\wedge }}_p};k)$ are $A_\infty$ algebras whose structure we determine up to quasi-isomorphism.
Let p be a prime. A pro-p group G is said to be 1-smooth if it can be endowed with a continuous representation
$\theta \colon G\to \mathrm {GL}_1(\mathbb {Z}_p)$
such that every open subgroup H of G, together with the restriction
$\theta \vert _H$
, satisfies a formal version of Hilbert 90. We prove that every 1-smooth pro-p group contains a unique maximal closed abelian normal subgroup, in analogy with a result by Engler and Koenigsmann on maximal pro-p Galois groups of fields, and that if a 1-smooth pro-p group is solvable, then it is locally uniformly powerful, in analogy with a result by Ware on maximal pro-p Galois groups of fields. Finally, we ask whether 1-smooth pro-p groups satisfy a “Tits’ alternative.”
For any given subgroup H of a finite group G, the Quillen poset ${\mathcal {A}}_p(G)$ of nontrivial elementary abelian p-subgroups is obtained from ${\mathcal {A}}_p(H)$ by attaching elements via their centralisers in H. We exploit this idea to study Quillen’s conjecture, which asserts that if ${\mathcal {A}}_p(G)$ is contractible then G has a nontrivial normal p-subgroup. We prove that the original conjecture is equivalent to the ${{\mathbb {Z}}}$-acyclic version of the conjecture (obtained by replacing ‘contractible’ by ‘${{\mathbb {Z}}}$-acyclic’). We also work with the ${\mathbb {Q}}$-acyclic (strong) version of the conjecture, reducing its study to extensions of direct products of simple groups of p-rank at least $2$. This allows us to extend results of Aschbacher and Smith and to establish the strong conjecture for groups of p-rank at most $4$.
In this paper, we study the structure of the rational cohomology groups of the IA-automorphism group $\mathrm {IA}_3$ of the free group of rank three by using combinatorial group theory and representation theory. In particular, we detect a nontrivial irreducible component in the second cohomology group of $\mathrm {IA}_3$, which is not contained in the image of the cup product map of the first cohomology groups. We also show that the triple cup product of the first cohomology groups is trivial. As a corollary, we obtain that the fourth term of the lower central series of $\mathrm {IA}_3$ has finite index in that of the Andreadakis–Johnson filtration of $\mathrm {IA}_3$.
The Σ-invariants of Bieri–Neumann–Strebel and Bieri–Renz involve an action of a discrete group G on a geometrically suitable space M. In the early versions, M was always a finite-dimensional Euclidean space on which G acted by translations. A substantial literature exists on this, connecting the invariants to group theory and to tropical geometry (which, actually, Σ-theory anticipated). More recently, we have generalized these invariants to the case where M is a proper CAT(0) space on which G acts by isometries. The “zeroth stage” of this was developed in our paper [BG16]. The present paper provides a higher-dimensional extension of the theory to the “nth stage” for any n.
We say a group G satisfies properties (M) and (NM) if every nontrivial finite subgroup of G is contained in a unique maximal finite subgroup, and every nontrivial finite maximal subgroup is self-normalizing. We prove that the Bredon cohomological dimension and the virtual cohomological dimension coincide for groups that admit a cocompact model for EG and satisfy properties (M) and (NM). Among the examples of groups satisfying these hypothesis are cocompact and arithmetic Fuchsian groups, one-relator groups, the Hilbert modular group, and 3-manifold groups.
We calculate the Bieri–Neumann–Strebel–Renz invariant Σ1(G) for finitely presented residually free groups G and show that its complement in the character sphere S(G) is a finite union of finite intersections of closed sub-spheres in S(G). Furthermore, we find some restrictions on the higher-dimensional homological invariants Σn(G, ℤ) and show for the discrete points Σ2(G)dis, Σ2(G, ℤ)dis and Σ2(G, ℚ)dis in Σ2(G), Σ2(G, ℤ) and Σ2(G, ℚ) that we have the equality Σ2(G)dis = Σ2(G, ℤ)dis = Σ2(G, ℚ)dis.
We use methods from the cohomology of groups to describe the finite groups which can act freely and homologically trivially on closed 3-manifolds which are rational homology spheres.
On établit une décomposition de l’homologie stable des groupes d’automorphismes des groupes libres à coefficients polynomiaux contravariants en termes d’homologie des foncteurs. Elle permet plusieurs calculs explicites, qui recoupent des résultats établis de manière indépendante par O. Randal-Williams et généralisent certains d’entre eux. Nos méthodes reposent sur l’examen d’extensions de Kan dérivées associées à plusieurs catégories de groupes libres, la généralisation d’un critère d’annulation homologique à coefficients polynomiaux dû à Scorichenko, le théorème de Galatius identifiant l’homologie stable des groupes d’automorphismes des groupes libres à celle des groupes symétriques, la machinerie des $\unicode[STIX]{x1D6E4}$-espaces et le scindement de Snaith.
We generalize the Cohen–Lenstra heuristics over function fields to étale group schemes $G$ (with the classical case of abelian groups corresponding to constant group schemes). By using the results of Ellenberg–Venkatesh–Westerland, we make progress towards the proof of these heuristics. Moreover, by keeping track of the image of the Weil-pairing as an element of $\wedge ^{2}G(1)$, we formulate more refined heuristics which nicely explain the deviation from the usual Cohen–Lenstra heuristics for abelian $\ell$-groups in cases where $\ell \mid q-1$; the nature of this failure was suggested already in the works of Malle, Garton, Ellenberg–Venkatesh–Westerland, and others. On the purely large random matrix side, we provide a natural model which has the correct moments, and we conjecture that these moments uniquely determine a limiting probability measure.
We provide explicit and unified formulas for the cocycles of all degrees on the normalized bar resolutions of finite abelian groups. This is achieved by constructing a chain map from the normalized bar resolution to a Koszul-like resolution for any given finite abelian group. With a help of the obtained cocycle formulas, we determine all the braided linear Gr-categories and compute the Dijkgraaf–Witten Invariants of the n-torus for all n.
A duality theorem for the stable module category of representations of a finite group scheme is proved. One of its consequences is an analogue of Serre duality, and the existence of Auslander–Reiten triangles for the $\mathfrak{p}$-local and $\mathfrak{p}$-torsion subcategories of the stable category, for each homogeneous prime ideal $\mathfrak{p}$ in the cohomology ring of the group scheme.
For a centre-by-metabelian pro-$p$ group $G$ of type $\text{FP}_{2m}$, for some $m\geqslant 1$, we show that $\sup _{M\in {\mathcal{A}}}$ rk $H_{i}(M,\mathbb{Z}_{p})<\infty$, for all $0\leqslant i\leqslant m$, where ${\mathcal{A}}$ is the set of all subgroups of $p$-power index in $G$ and, for a finitely generated abelian pro-$p$ group $V$, rk $V=\dim V\otimes _{\mathbb{Z}_{p}}\mathbb{Q}_{p}$.
We consider smooth, complex quasiprojective varieties $U$ that admit a compactification with a boundary, which is an arrangement of smooth algebraic hypersurfaces. If the hypersurfaces intersect locally like hyperplanes, and the relative interiors of the hypersurfaces are Stein manifolds, we prove that the cohomology of certain local systems on $U$ vanishes. As an application, we show that complements of linear, toric, and elliptic arrangements are both duality and abelian duality spaces.
For a field $\text{k}$, we prove that the $i$th homology of the groups $\operatorname{GL}_{n}(\text{k})$, $\operatorname{SL}_{n}(\text{k})$, $\operatorname{Sp}_{2n}(\text{k})$, $\operatorname{SO}_{n,n}(\text{k})$, and $\operatorname{SO}_{n,n+1}(\text{k})$ with coefficients in their Steinberg representations vanish for $n\geqslant 2i+2$.