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Abstract
A theorem of Brady and Meier states that a right-angled Artin group is a duality group if and only if the flag complex
of the defining graph is Cohen–Macaulay. We use this to give an example of a RAAG with the property that its outer
automorphism group is not a virtual duality group. This gives a partial answer to a question of Vogtmann. In an
appendix, Brück describes how he used a computer-assisted search to find further examples.

1. Introduction

The definition of a duality group was introduced by Bieri and Eckmann in [5] in order to describe groups
that have a (possibly twisted) pairing between homology and cohomology. A group G is a virtual duality
group if some (equivalently, any) finite-index torsion-free subgroup of G is a duality group. By Poincaré
duality, fundamental groups of closed aspherical manifolds are duality groups. Furthermore, mapping
class groups [22], GLn(Z) [6], and Out(Fn) [4, 12] are also virtual duality groups for more subtle reasons.
As outer automorphism groups of right-angled Artin groups interpolate between GLn(Z) and Out(Fn),
it is not unreasonable to guess that Out(A�) might also be a virtual duality group. The purpose of this
note is to show that in general, this is not the case.

Theorem A. Let � be the graph given in Figure 1. Then Out(A�) is not a virtual duality group.

With hindsight, the failure of duality here should not be too surprising, simply because right-angled
Artin groups themselves are rarely duality groups. A wonderful theorem of Brady and Meier [8] shows
that a right-angled Artin group A� is a duality group if and only if the flag complex �̂ of the defining
graph is Cohen–Macaulay (see Definition 2.1). To briefly sketch how their result implies Theorem A,
let � be the join of the subgraphs �1 and �2 given in Figure 1. The Join Lemma, given below, gives a
method for constructing outer automorphism groups of RAAGs with finite-index RAAG subgroups. Its
proof follows reasonably quickly from existing results (see Section 2.3 for details).

Lemma 1.1 (Join Lemma). Let A�1 and A�2 be two noncyclic right-angled Artin groups with finite
outer automorphism groups. If � = �1 � �2 is the disjoint union of the two graphs, and � = �1 � �2

is their join, then Out(A�) has a finite-index subgroup isomorphic to the right-angled Artin group
A�1 ⊕ A�2

∼= A�.

The construction of the graph � in Figure 1 ensures that both A�1 and A�2 have finite outer auto-
morphism groups, so that Out(A�) has a finite-index subgroup isomorphic to A�1 ⊕ A�2

∼= A�. However,
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Figure 1. A graph � = �1 � �2 such that Out(A�) is not a virtual duality group. The grey triangles are
added to show the flag complex �̂ determined by �.

the flag complex �̂ is not Cohen–Macaulay, so neither A� nor Out(A�) is a (virtual) duality group.
Full details are given in Section 2. More generally, the Join Lemma gives a way of constructing many
examples of RAAGs A� appearing as finite-index subgroups of Out(A�) for certain �.

Theorem A gives a very partial answer to Question 3 from Vogtmann’s Groups St. Andrews lecture
notes on automorphism groups of RAAGs [28]. We discuss this in more detail and highlight related
questions in Section 3. After circulating a draft of this paper, Brück used a computer search to find
further examples of RAAGs satisfying the conclusion of Theorem A. He kindly agreed to describe
these examples and his approach in an appendix. More recently, Wiedmer [29] built on these ideas to
prove the remarkable result that every right-angled Artin group A� is commensurable with Out(A�)
for some other RAAG A�. This gives a vast range of examples of RAAGs whose outer automorphism
groups are not duality groups.

2. Proof of Theorem A

In this section, we provide background, definitions, and expand on the sketch proof given in the
introduction to give a full proof of Theorem A.

2.1. Right-angled Artin groups

Let � be a finite graph with vertex set V(�). The right-angled Artin group determined by the graph �

is the finitely presented group A� with the presentation:

A� = 〈v ∈ V(�) | vw = wv if v and w span an edge in �.〉
We will always assume subgraphs � ⊂ � are full, so that two vertices in � are connected by an edge if
and only if they are connected by an edge in �. We will also assume that our graphs are simple, so that
there are no loops and no double edges in � (this is safe to do as relations given by loops or double edges
do not change the group obtained from the above presentation). We make use of the following facts:

• The centre of a right-angled Artin group A� is generated by the vertices v that are adjacent to
every other vertex.

• A RAAG A� is one-ended if and only if � is connected and contains at least two vertices ([18]
proves something much stronger than this - probably the simplest way to show this directly is
by using [18, Lemma 1.1]).

For introductions to RAAGs and their automorphisms, we recommend the survey papers of Charney
[13] and Vogtmann [28].

2.2. Flag complexes, the Cohen–Macaulay condition, and duality for RAAGs

For a simple graph �, we use �̂ to denote the flag complex determined by �. One can define �̂ as being
obtained from � by filling in any ‘visible’ simplices, or as the the largest simplicial complex on the vertex
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set V(�) with the same edge set as �. The star of a simplex σ is the subcomplex spanned by simplices
containing σ , and the link of σ is the subcomplex consisting of simplices τ ∈ st(σ ) with σ ∩ τ = ∅.

Definition 2.1 (Cohen–Macaulay complexes). A finite simplicial complex X is Cohen–Macaulay of
dimension n if

• the reduced homology H∗(X; Z) is free abelian (possibly trivial) and concentrated in degree n,
• each maximal simplex is n-dimensional, and
• for each non-maximal k-simplex σ , the reduced homology H∗(lk(σ ); Z) is free abelian (possibly

trivial) and concentrated in degree n − k − 1.

A group G is a duality group of dimension n if there exists a G–module D and an element e ∈ Hn(G; D)
such that the cap product with e induces an isomorphism

Hn−k(G; M) ∼= Hk(G; D ⊗ M)

for all k and all G–modules M. If we can take D =Z in the above then G is a Poincaré duality group
(Bieri and Eckmann allow a nontrivial action on Z in this definition). We do not work with the definition
in this note, instead relying on the following theorem of Brady and Meier.

Theorem 2.2 ([8], Theorem C). Let � be a finite simple graph. The right-angled Artin group A� is a
duality group if and only if the flag complex �̂ is Cohen–Macaulay.

A group G is a virtual duality group if some finite-index subgroup H of G is a duality group. In this
case, H is torsion-free, and every finite-index torsion-free subgroup of G is also a duality group. This
is well-known and follows directly from results in [5] but as it is important in what follows we record it
below.

Lemma 2.3. If G is a virtual duality group and H is a finite-index, torsion-free subgroup of G, then H
is a duality group.

Proof. As G is a virtual duality group, there exists a finite-index subgroup H0 of G that is a duality
group. Let H′ = H ∩ H0. As H′ is finite-index in H0, it is also a duality group by [5, Theorem 3.2]. By
[5, Theorem 3.3], any torsion-free, finite-index overgroup of a duality group is also a duality group. As
H′ is also finite-index in H, it follows that H is a duality group.

2.3. Finiteness conditions for Out(A�) and the join Lemma

In this section, we show that for our example graph in Figure 1 the group Out(A�) has a finite index
subgroup isomorphic to A�1 ⊕ A�2 . For experts, this is the subgroup of Out(A�) generated by partial
conjugations, and it is finite index as � is chosen in a way so that Out(A�) contains no transvections. We
break this down into two steps, starting with conditions that describe when Out(A�) is finite:

Proposition 2.4 ([14], Section 6). Let � be a finite graph. The group Out(A�) is finite if and only if for
each vertex u:

• any two vertices in � − st(u) are connected by a path in � − st(u), and
• if lk(u) ⊂ st(v) for some vertex v then u = v.

Going back in the other direction, finiteness of the outer automorphism group Out(A�) imposes the
following restrictions on the graph � and its associated RAAG.

https://doi.org/10.1017/S0017089523000149 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000149


576 Richard D. Wade and Benjamin Brück

Lemma 2.5. Let � be a graph such that Out(A�) is finite. Then

• � is connected, so that A� is either cyclic or one-ended.
• If � is not a single point (so that A� is noncyclic), the centre Z(A�) of A� is trivial.

Proof. Let � be a graph such that Out(A�) is finite. The first condition of Proposition 2.4 implies
that � has at most two connected components, and if there are exactly two connected components then
the star of each vertex u is equal to its own component. Suppose there are exactly two components
C1 and C2 such that for each u ∈ Ci we have st(u) = Ci. This contradicts the second bullet point from
Proposition 2.4: either we can find two distinct vertices u and v in the same component that satisfy
lk(u) ⊂ st(v), or there is an isolated vertex u whose link is empty and therefore contained in the star of
every other vertex. Hence, � is connected. Furthermore, if there are at least two vertices in � then Z(A�)
must be trivial, otherwise the star of some vertex is the whole graph and we would have a contradiction
to the second bullet point from Proposition 2.4.

The second proposition we use is a bit more general and follows from Guirardel and Levitt’s work
on automorphism groups of free products [19].

Proposition 2.6. Let A and B be one-ended groups with centres denoted Z(A) and Z(B), respec-
tively. If A and B have finite outer automorphism groups, then Out(A ∗ B) has a finite-index subgroup
isomorphic to

A/Z(A) ⊕ B/Z(B).

Sketch proof. As both A and B are one-ended, G = A ∗ B is the Grushko decomposition of G. In this
case, the Outer space of the free product (see [19]) reduces to a single point: the Bass–Serre tree given
by the splitting A ∗ B is invariant under the whole of Out(G). By looking at the stabiliser of this tree
([19, Section 5] or alternatively [3, 24]) one obtains a subgroup Out0(G) of Out(G) of index at most two
that splits as the following short exact sequence:

1 → A/Z(A) ⊕ B/Z(B) → Out0(G) → Out(A) ⊕ Out(B) → 1.

When both Out(A) and Out(B) are finite, the kernel of this exact sequence is finite index in Out(G).

Combining the above allows us to prove the Join Lemma from the introduction:

Proof of the Join Lemma. Let � = �1 � �2 be the disjoint union of two graphs with the property that
their associated RAAGs A�i are noncyclic and have finite outer automorphism groups. By Lemma 2.5,
both A�1 and A�2 are one-ended and have trivial centres. As A�

∼= A�1 ∗ A�2 , Proposition 2.6 tells us that
Out(A�) has a finite index subgroup isomorphic to A�1 ⊕ A�2 .

Applying the Join Lemma to our specific example, we have:

Lemma 2.7. Let Out(A�) be the graph given in Figure 1. Then Out(A�) has a finite index subgroup
isomorphic to A�1 ⊕ A�2 .

Sketch proof. In order to apply the Join Lemma we check the conditions of Proposition 2.4 vertex-by-
vertex: that is, for each u ∈ �i, the star of u does not separate �i and if lk(u) ⊂ st(v) then u = v. For �1 this
is straightforward. For �2 this is a little harder, but we feel that a line-by-line proof is not beneficial to the
paper or the reader. To convince oneself that this holds, we recommend that one looks at the following
cases for a vertex u ∈ �2: u is a vertex on one of the two strings attached to the hexagon, u is the endpoint
of a string, u is one of the two vertices in the middle of the hexagon, and lastly u is one of the two points
on the boundary of the hexagon that are not endpoints of a string. These cases cover all vertices in �2,
and in each case the star of u does not separate the graph and the link of u is not contained in the star of
any other vertex.
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2.4. The proof of Theorem A and the Aut case

Proof of Theorem A. Let � be the graph from Figure 1. By Lemma 2.7, the group Out(A�) has a finite-
index subgroup isomorphic to A�1 ⊕ A�2 . This is the right-angled Artin group on the graph � = �1 � �2

formed by taking the join of the two graphs �1 and �2. A one-dimensional maximal simplex in ̂�2 (i.e. an
edge on one of the strings) is contained in simplices of dimension at most three in the join ̂� ∼= ̂�1 � ̂�2,
whereas ̂� is 4-dimensional. As the maximal simplices of ̂� are not of uniform dimension, the flag
complex ̂� is not Cohen–Macaulay. Therefore, A� is not a duality group. As every finite-index, torsion-
free subgroup of a virtual duality group is a duality group (Lemma 2.3), the group Out(A�) is not a
virtual duality group.

For completeness, we note that we can obtain a similar result in the Aut case:

Proposition 2.8. If �2 is the graph given in Figure 1, then Aut(A�2 ) is not a virtual duality group.

Proof. As Out(A�2 ) is finite and the centre of A�2 is trivial, the group of inner automorphisms is finite-
index in Aut(A�2 ) and is isomorphic to A�2 . As ̂�2 is not Cohen–Macaulay (the maximal simplices of
̂�2 do not all have the same dimension), the group A�2 is not a duality group, so that Aut(A�2 ) is not a
virtual duality group.

3. Further discussion

In this section, we collect some related questions. Most of these problems have appeared elsewhere
previously. Vogtmann gave five questions centred around O� (the RAAG version of outer space) at the
end of [28]. This is question three:

Question 3.1 (Vogtmann, [28]). Is Out(A�) a virtual duality group? Is there a bordification of O�

which is a hybrid of the Borel–Serre bordification of the symmetric space Dn and the Bestvina–Feighn
bordification of Outer space CVn? If so, is bordified O� highly connected at infinity?

The space O� was recently shown to be contractible in work of Bregman, Charney, and Vogtmann
[9] and admits a proper action of Out(A�). Our example shows that the classification of when Out(A�)
is a virtual duality group is a delicate problem. Note that even when duality fails, the behaviour of O�

at infinity (often described via a bordification) is a very interesting problem. The outer automorphism
group constructed in Theorem A suggests that as well as expecting pieces of a potential bordification to
behave like the Borel–Serre bordification of symmetric space [6] and the Bestvina–Feighn bordification
of Outer space [4, 12], we should expect (bordifications of?) Salvetti complexes to also appear, at least
in the geometry if not in the actual construction (the explicit construction of O� is in terms of blow-ups
and collapses of certain cubulations of A�: when Out(A�) is virtually A�, we should expect O� to be
related to the Salvetti complex of A�, but we do not think this relationship is clear from the definitions).

Recently, Brück [11] has constructed an Out(A�) complex X� which is a hybrid of the free factor
complex and the Tits building for GLn(Z), although X� has larger Out(A�)-stabilizers than one might
hope for (for instance, X� is trivial for the graph from our main theorem). Brück showed that these
complexes are Cohen–Macaulay, so one hope is that X� could be used to reduce problems about duality
to the behaviour of Out(A�)-stabilizers in X�.

3.1. Obstructions to duality: Fouxe–Rabinovitch groups

Recall that if

G = G1 ∗ G2 ∗ · · · ∗ Gk ∗ Fn
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is a (not necessarily maximal) free factor decomposition of a group, the associated Fouxe–Rabinovitch
group is the subgroup of Out(G) consisting of outer automorphisms � that have representatives
φ1, . . . , φk ∈ � such that each representative φi acts as the identity when restricted to Gi. This is written
as Out(G; G t).

The decomposition series constructed in our work with Day [17] break up Out(A�) into consecutive
quotients that are either free-abelian, GL(n, Z), or certain Fouxe–Rabinovitch groups. If all the consecu-
tive quotients are virtual duality groups, then so is Out(A�) (when working with more general subnormal
series one has to be a little bit careful about the passage to finite index subgroups, however here we can
use congruence subgroups). This leads us to ask the following question, which also appeared briefly
in [15].

Question 3.2. Let G be a free factor decomposition of a RAAG A�. When is Out(A�; G t) a virtual duality
group?

For the graph in Figure 1, the RAAG subgroup A� of Out(A�) appears as the Fouxe–Rabinovitch
group Out(A�; {A�1 , A�2}t). Here, the failure of duality comes from failure of the factor groups to be
duality groups.

However, we conjecture that there is another possible obstruction. In comparison with known exam-
ples in the literature, we expect natural classifying spaces for duality groups to look uniformly of the
same dimension as the group (i.e. all maximal simplices/cells are of dimension d = cd(G)). For Fouxe–
Rabinovitch groups, classifying spaces of minimal dimension can be obtained as a blow-up of the spine
of relative Outer space by replacing each simplex σ with a copy of σ × EStab(σ ) [15] (at least after pass-
ing to an appropriate torsion-free f.i. subgroup). However, as we will see below, one can have simplices in
relative Outer space of the same dimension whose stabilisers have different (geometric/cohomological)
dimensions. As the spine is uniform, the resulting blow-up will not be uniform - some maximal simplices
will be of dimension strictly less than cd(G).

The group of pure symmetric outer automorphisms (also called basis-conjugating automorphisms)
PSO(A�) is the subgroup of Out(A�) given by all outer automorphisms � whose representatives φ ∈ �

send every generator v ∈ V(�) to a conjugate of itself. For A� =Z
2 ∗Z

3 ∗Z
4, the group PSO(A�) forms

a Fouxe–Rabinovitch group. Either using the work in [16] or by working directly from a presentation,
one can show that

PSO(Z2 ∗Z
3 ∗Z

4) ∼=Z
2 ∗Z

3 ∗Z
4.

This gives another example of a Fouxe–Rabinovitch group that is not a virtual duality group. In this
case, Out(A�) fits in a short exact sequence

1 →Z
2 ∗Z

3 ∗Z
4 → Out(A�) → GL2(Z) ⊕ GL3(Z) ⊕ GL4(Z) → 1,

so unlike our first example the group PSO(A�) is not finite-index in Out(A�). It would be interesting to
know how this decomposition is reflected in the geometry of the outer space for the RAAG.

The following simplification of Question 3.2 is interesting in its own right:

Question 3.3. Let F be a free factor system in a free group FN . When is Out(FN ; F t) a virtual duality
group?

This is true when F = ∅ (by Bestvina and Feighn [4]), and in the case where F =Z ∗Z ∗ · · · ∗Z

is the free factor decomposition that determines the pure symmetric automorphism group (by Brady,
McCammond, Meier, and Miller [7]). In both of the above cases, simplex stabilisers behave well in the
spine of the (relative) outer space, and the problem illustrated in Figure 2 does not occur. However, this
is not true for an arbitrary free factor system of FN .
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Figure 2. Three points in the spine of the relative outer space for A� =Z
2 ∗Z

3 ∗Z
4, whose

Out(A�)-stabilizers are isomorphic to Z
2, Z3, and Z

4, respectively.

3.2. Commensurability problems

Given the construction in Theorem A, it seems worthwhile to repeat the following question, a version
of which appeared as Question 1.1 in [16].

Question 3.4. When does Out(A�) have a finite-index subgroup isomorphic to a right-angled Artin
group A�? Conversely, which RAAGs appear as such finite-index subgroups?

One can also ask similar questions up to quasi-isometry. The above problem is discussed at some
length in the introduction of [16], so we will limit ourselves to mentioning more recent developments.
Notably, the work of Aramayona and Martinez–Perez [2] on when Out(A�) can have property (T) has
been recently extended by Sale [27]. Through this work, as well as Guirardel and Sale’s work on vastness
properties and Out(A�) [20], we now have much better control over the behaviour of outer automorphism
groups of RAAGs that, roughly speaking, do not look like Out(Fn) or GL(n, Z). These results give
reasons to be more optimistic about the tractability of the first part of Question 3.4. The second part of
this question seems much harder, given the fact that quasi-isometry and commensurability classification
problems for RAAGs themselves are incredibly difficult (see [23, 25]). However, the Join Lemma does
provide a way to construct families of examples A� that are finite index in Out(A�) for some � (and
now the work of Wiedmer greatly extends this [29]). It is also worth noting that [16, Question 1.2]
gave a more general recognition problem about RAAGs, which was later answered in the negative by
Bridson [10].

Remark 3.5. Let � be the example graph in Figure 1 and A� = A�1 × A�2 be the associated finite-
index RAAG subgroup of Out(A�). Corey Bregman pointed out some extensions to our main example
where Out(A�) behaves similarly but � is connected. If �′ is the cone of our example graph with an
additional vertex, then Out(A

�
′ ) is commensurable with A� ×Z

|�| (there is an additional free abelian
group generated by transvections by the additional central element and these commute with the existing
partial conjugations). Rather than taking the cone, one can take �′ ′ to be the join of � with two ver-
tices (while working with flag complexes, we can think of this as the suspension of �), in which case
Out(A

�
′ ′ ) ∼= Out(A�) × Out(F2), so is commensurable with A� × F2, as Out(F2) is virtually free. Further

connected examples are given in the appendix.

Appendix A. Computer-assisted construction of further examples, by Benjamin Brück
In [16], Day–Wade give sufficient and necessary conditions for when the group of pure symmetric outer
automorphisms PSO(A�) is itself a RAAG. This gives another way to find examples of RAAGs whose
outer automorphism groups are not virtual duality groups. In particular, computer calculations that used
the conditions of [16] revealed the two examples depicted in Figure 3; both are connected and have only
nine vertices.

To obtain these examples, one proceeds as follows: If Out(A�) contains no transvections (which is
equivalent to the second condition of Proposition 2.4), then PSO(A�) has finite index in Out(A�). Day–
Wade define for a vertex a ∈ � a support graph �a that encodes the structure of connected components
of � − st(a), see [16, Definition 1.3]. They show that PSO(A�) is isomorphic to a RAAG if and only if
for all a this support graph is a forest. Furthermore, if this is the case, they explain how to obtain a graph
	 such that PSO(A�) ∼= A	. If the flag complex 	̂ associated to this graph is not Cohen–Macaulay, then
A	 is not a duality group. Hence, Out(A�) cannot be a virtual duality group.
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Figure 3. Two graphs �i with nine vertices such that Out(A�i ) is not a virtual duality group. The top
row shows the defining graphs �i, the bottom row shows graphs 	i such that PSO(A�i ) ∼= A	i .

Algorithm 1 Finding � such that Out(�) is not a virtual duality group
while not found_example do

generate a random graph �

if Out(�) has no transvections then
(The group PSO(A�) is finite index in Out(A�).)
if every support graph is a forest then

(The group PSO(A�) is isomorphic to a RAAG A	.)
calculate 	

if there are maximal cliques of different size in 	 then
(The flag complex 	̂ is not Cohen–Macaulay, so A	 is not a duality
group and thus Out(A�) is not a virtual duality group.)
found_example = True
return �

end if
end if

end if
end while

In order to use these arguments for finding explicit examples, we wrote a python script that generates
random graphs using the Erdős–Rényi model with varying numbers of vertices and edge probabilities
and follows the steps in the previous paragraph. The script does not actually verify all the con-
ditions for Cohen–Macaulayness but instead just checks whether the corresponding flag complexes
are pure, that is whether all the maximal simplices have the same dimension. A summary of the
procedure can be found in Algorithm 1. All of these conditions can easily be checked using sim-
ple operations on graphs provided by the python package networkx [21]. The code is available at
https://github.com/benjaminbrueck/computations_for_roars/blob/main/duality_Out(RAAGs).ipynb.

The two examples in Figure 3 were obtained using this method. It is not hard to verify by hand that all
the support graphs are forests (in fact, none contains more than one edge) and to compute the associated
graphs 	i.

These graphs have 9 vertices and 15 and 17 edges, respectively. We believe that they are the examples
with the minimal number of vertices that can be obtained using this procedure. Computer calculations
show that the obstruction above does not appear among the 1253 simple graphs with at most 7 vertices
(as provided by the Atlas of Graphs [26]). There are 12,346 graphs on 8 vertices and 274,668 graphs on
9 vertices [1]. For these, we did not have a list available. However, the computer generated 106 random
graphs with 8 vertices without finding an example. For 9 vertices, around 107 random graphs were
generated and up to isomorphism, the examples presented in Figure 3 were the only ones that appeared.
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Of course, one could also try to use other obstructions in order to find examples where the flag
complex 	̂ is not Cohen–Macaulay. In addition to checking whether 	̂ is pure, we also looked for
disconnected graphs of dimension at least one. However, this did not lead to new findings with 9 or
fewer vertices. We doubt that looking for further obstructions to Cohen–Macaulayness would be very
helpful as calculations showed that for such small graphs, the dimension of 	̂ is usually low.
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