Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-30T00:24:46.508Z Has data issue: false hasContentIssue false

3 - Positioning techniques

from Part I - History and applications

Published online by Cambridge University Press:  05 February 2012

Azadeh Kushki
Affiliation:
Holland Bloorview Kids Rehabilitation Hospital
Konstantinos N. Plataniotis
Affiliation:
University of Toronto
Anastasios N. Venetsanopoulos
Affiliation:
Ryerson Polytechnic University, Toronto
Get access

Summary

In the previous chapters, we discussed the history and application of modern positioning systems that enable the delivery of location-based services (LBS). In this chapter, we shift our attention to the fundamental positioning principles used in these systems. We begin this chapter by presenting the location stack, a model of location-aware systems, and identify the focus of this book (Section 3.1). We then proceed to discuss the most commonly used techniques for computing the position of mobile receivers. Similar to the techniques used in celestial navigation, modern positioning systems often employ a set of references with known locations for position computation. In this chapter, we discuss different positioning methods, differentiated by the type of references and signal measurements used (Sections 3.2 to 3.4). In addition to these techniques, which generally employ wireless signals, we will also briefly review dead reckoning (Section 3.6) and computer-based positioning (Section 3.7) methods. These two techniques employ modalities complementary to wireless measurements and as such provide a promising direction of development for hybrid positioning systems that employ multiple measurements to improve the accuracy and reliability of positioning. Finally, we conclude the chapter by discussing the advantages and disadvantages of each positioning method (Section 3.8).

The location stack

To position this book within the wealth of information available on positioning systems used in LBS, we review a model of location-aware systems proposed by Hightower et al. [35].

Type
Chapter
Information
WLAN Positioning Systems
Principles and Applications in Location-Based Services
, pp. 30 - 41
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×