Skip to main content Accessibility help
×
  • Cited by 33
Publisher:
Cambridge University Press
Online publication date:
February 2012
Print publication year:
2012
Online ISBN:
9780511978784

Book description

Describing the relevant detection and estimation theory, this detailed guide provides the background knowledge needed to tackle the design of practical WLAN positioning systems. It sets out key system-level challenges and design considerations in increasing positioning accuracy and reducing computational complexity, and it also examines design trade-offs and experimental results. Radio characteristics in real environments are discussed, as are the theoretical aspects of non-parametric statistical tools appropriate for modeling radio signals, statistical estimation techniques and the model-based stochastic estimators often used for positioning. A historical account of positioning systems in also included, giving graduate students, researchers and practitioners alike the perspective needed to understand the benefits and potential applications of WLAN positioning.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
[1] E., Aarts and B., Eggen. Ambient Intelligence in HomeLab. Eindhoven: Neroc Publishers, 2002.
[2] G., Antonini. A discrete choice modeling framework for pedestrian walking behavior with application to human tracking in video sequences. Ph.D. thesis, Ècole Polytechnique Fèdèrale de Lausanne, 2006.
[3] M. S., Arulampalam, S., Maskell, N., Gordon, and T., Clapp. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174–188, 2002.
[4] P., Bahl and V. N., Padmanabhan. RADAR: an in-building RF-based user location and tracking system. In Proc. IEEE Infocom, Tel Aviv, 2000, vol. 2, pp. 775–784.
[5] R. M., Balan. Q-markov random probability measures and their posterior distributions. Stochastic Processes and their Applications, 109(2):295–316, 2004.
[6] Y., Bar-Shalom, X.-R., Li, and T., Kirubarajan. Estimation with Applications to Tracking and Navigation. New York: Wiley, 2001.
[7] D., Basu. Statistical Information and Likelihood: A Collection of Critical Essays. New York: Springer-Verlag, 1988.
[8] A. R., Beresford and F., Stajano. Location privacy in pervasive computing. IEEE Pervasive Computing, 2(1):46–55, 2003.
[9] D., Bosq. Nonparametric Statistics for Stochastic Processes: Estimation and Prediction. Lecture Notes in Statistics 110. New York: Springer, 1998.
[10] M., Brunato and R., Battiti. Statistical learning theory for location fingerprinting in wireless LANs. Computer Networks, 47(6):825–845, 2005.
[11] S., Capkun, M., Cagalj, and M., Srivastava. Secure localization with hidden and mobile base stations. In Proc. 25th IEEE Int. Conf. Computer Communications (INFOCOM), Barcelona, 2006, p. 1–10.
[12] A. F., Cattoni, A., Dore, and C. S., Regazzoni. Video-radio fusion approach for target tracking in smart spaces. In Proc. IEEE Int. Conf. Information Fusion, Quebec, 2007.
[13] Y., Chen, W., Trappe, and R. P., Martin. ADLS: Attack detection for wireless localization using least squares. In Proc. 5th Annu. IEEE Int. Conf. Pervasive Computing and Communications Workshops (PerComW'07), 2007, pp. 610–613.
[14] Y., Chen, Q., Yang, J., Yin, and X., Chai. Power-efficient access-point selection for indoor location estimation. IEEE Transactions on Knowledge and Data Engineering, 18(7):877–888, 2006.
[15] ,Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology. MIT: Project Oxygen, 2004.
[16] P. M., Djuric, J. H., Kotecha, J., Zhang, Y., Huang, T., Ghirmai, and M. F., BugalloJoaquin Miguez. Particle filtering. IEEE Signal Processing Magazine, 20(5):19–38, 2003.
[17] A., Dore, A. F., Cattoni, and C. S., Regazzoni. A particle filter based fusion framework for video-radio tracking in smart spaces. In Proceedings IEEE Conf. Advanced Video and Signal Based Surveillance (AVSS), 2007, pp. 99–104.
[18] A., Doucet, S., Godsill, and C., Andrieu. On sequential Monte Carlo sampling methods for bayesian filtering. Statistics and Computing, 10(3):197–208, 2000.
[19] R. O., Duda, P. E., Hart, and D. G., Stork. Pattern Classification, 2nd edn. New York: Wiley, 2001.
[20] P., Enge and P., Misra. Special issue on global positioning system. Proceedings of the IEEE, 87(1):3–15, 1999.
[21] S. H., Fang and T. N., Lin. Indoor location system based on discriminant-adaptive neural network in IEEE 802.11 environments. IEEE Transactions on Neural Networks, 19(11):1973–1978, 2008.
[22] S. H., Fang, T. N., Lin, and P. C., Lin. Location fingerprinting in a decorrelated space. IEEE Transactions on Knowledge and Data Engineering, pp. 685–691, 2007.
[23] Federal Communications Commission (FCC). Report and order and further notice of proposed rulemaking in the matter of revision of the commission's rules to ensure compatibility with enhanced 911 emergency calling systems, 1996.
[24] J., Figueiras and S., Frattasi. Mobile Positioning and Tracking. Wiley Online Library, 2010.
[25] Georgia Institute of Technology. Aware Home Research Initiative, 2004.
[26] I. A., Getting. The global positioning system. IEEE Spectrum, 30(12):36–47, 1993.
[27] A., Goldsmith. Wireless Communications. Cambridge: Cambridge University Press, 2005.
[28] Adam, Greenfield. Everyware: The Dawning Age of Ubiquitous Computing. Berkeley, CA: New Riders, 2006.
[29] F., Gustafsson, F., Gunnarsson, N., Bergman, U., Forssell, J., Janssona, R., Karlsson, and P.-J., Nordlund. Particle filters for positioning, navigation, and tracking. IEEE Transactions on Signal Processing, 50(2):425–437, 2002.
[30] I., Guvenc, C. T., Abdallah, R., Jordan, and O., Dedeoglu. Enhancements to RSS based indoor tracking systems using Kalman filters. In Proc. Int. Signal Processing Conference and Global Signal Processing Expo, Dallas, TX, 2003.
[31] A., Haeberlen, E., Flannery,A.M., Ladd, A., Rudys, D. S., Wallach, and L. E., Kavraki. Practical robust localization over large-scale 802.11 wireless networks. In Proc. Tenth ACM Int. Conf. Mobile Computing and Networking (MOBICOM), Philadelphia, PA, 2004, pp. 70–84.
[32] A., Hampapur, L., Brown, J., Connell, A., Ekin, N., Haas, M., Lu, H., Merkl, and S., Pankanti. Smart video surveillance: exploring the concept of multiscale spatiotemporal tracking. Signal Processing Magazine, IEEE, 22(2):38–51, 2005.
[33] S., Haykin. Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice Hall, 2002.
[34] M., Hazas, J., Scott, and J., Krumm. Location-aware computing comes of age. IEEE Computer, 37(2):95–97, 2004.
[35] J., Hightower, B., Brumitt, and G., Borriello. The location stack: a layered model for location in ubiquitous computing. In Proc. 4th IEEE Workshop Mobile Computing Systems and Applications, New York, 2002, pp. 22–28.
[36] Y., Ho and R., Lee. A Bayesian approach to problems in stochastic estimation and control. IEEE Transactions on Automatic Control, 9(4):333–339, 1964.
[37] W., Hu, T., Tan, L., Wang, and S., Maybank. A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man and Cybernetics, Part C, 34(3):334–352, August 2004.
[38] IEEE. IEEE Standard for information technology – Telecommunications and information exchange between systems – local and metropolitan area networks – specific requirements – Part 11: wirelessLANmedium access control(MAC)and physical layer (PHY) specifications, 2007.
[39] A. J., Izenman. Recent developments in nonparametric density estimation. Journal of the American Statistical Association, 86: 205–224, 1991.
[40] Y., Jie, Y., Qiang, and N., Lionel. Learning adaptive temporal radio maps for signal-strengthbased location estimation. IEEE Transactions on Mobile Computing, 7(7): 869–883, 2008.
[41] K., Kaemarungsi. Distribution of WLAN received signal strength indication for indoor location determination. In Proc. First IEEE Int. Symp. Wireless Pervasive Computing, Phuket, 2006.
[42] K., Kaemarungsi and P., Krishnamurthy. Modeling of indoor positioning systems based on location fingerprinting. In Proc. 23rd Annu. Joint Conf. IEEE Computer and Communications Societies (INFOCOM), Hong Kong, 2004, vol. 2, pp. 1012–1022.
[43] K., Kaemarungsi and P., Krishnamurthy. Properties of indoor received signal strength for WLAN location fingerprinting. In Proc. 1st Annu. Int. Conf. Mobile and Ubiquitous Systems: Networking and Services (MOBIQUITOUS), Boston, MA, 2004, pp. 14–23.
[44] T., Kailath, A. H., Sayed, and B., Hassibi. Linear Estimation. Upper Saddle River,N. J.: Prentice Hall, 2000.
[45] R. E., Kalman. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1):35–45, 1960.
[46] M. B., Kjærgaard. A taxonomy for radio location fingerprinting. Lecture Notes in Computer Science, 4718:139–156, 2007.
[47] M. B., Kjærgaard, G., Treu, P., Ruppel, and A., Küpper. Efficient indoor proximity and separation detection for location fingerprinting. In Proc. 1st Int. Conf. MOBILe Wireless Middle-WARE, Operating Systems, and Applications, ICST (Institute for Computer Sciences, Social Informatics and Telecommunications Engineering), 2008, pp. 1–8.
[48] M., Kjaergaard and C., Munk. Solving RSS client differences by hyperbolic location fingerprinting. In Proc. IEEE Int. Conf. Pervasive Computing and Communications, Alexandria, 2008.
[49] P., Krishnan, A. S., Krishnakumar, W.-H., Ju, C., Mallows, and S., Ganu. A system for LEASE: Location estimation assisted by stationary emitters for indoor RF wireless networks. In Proc. IEEE Infocom, Hong Kong, 2004, vol. 2, pp. 1001–1011.
[50] A., Küpper. Location-Based Services: Fundamentals and Operation. Chichester: John Wiley and Sons, 2005.
[51] A., Kushki, K. N., Plataniotis, and A. N., Venetsanopoulos. Location tracking in wireless local area networks with adaptive radio maps. In Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, 2006, vol. 5, pp. 741–744.
[52] A., Kushki, K. N., Plataniotis, and A. N., Venetsanopoulos. Kernel-based positioning in wireless local area networks. IEEE Transactions on Mobile Computing, 6(6):689–705, 2007.
[53] A., Kushki, K. N., Plataniotis, and A. N., Venetsanopoulos. Sensor selection for mitigation of RSS-based attacks in wireless local area network positioning. In Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, NV, 2008, pp. 2065–2068.
[54] A., Kushki, K. N., Plataniotis, and A. N., Venetsanopoulos. Cognitive dynamic tracking for indoor wireless local area networks. IEEE Transactions on Mobile Computing, 9(3):390–404, 2010.
[55] A. M., Ladd, K. E., Bekris, A., Rudys, G., Marceau, L. E., Kavraki, and D. S., Wallach. Robotics-based location sensing using wireless ethernet. In Proc. 8th ACM Int. Conf. Mobile Computing and Networking (MobiCom), Atlanta, GA, 2002, pp. 227–238.
[56] A., LaMarca and E., de Lara. Location systems: An introduction to the technology behind location awareness. Synthesis Lectures on Mobile and Pervasive Computing, 3(1), 2008.
[57] X., Li and K., Pahlavan. Super-resolution TOA estimation with diversity for indoor geolocation. IEEE Transactions on Wireless Communications, 3(1):224–234, 2004.
[58] Z., Li, W., Trappe, Y., Zhang, and B., Nath. Robust statistical methods for securing wireless localization in sensor networks. In Proc. 4th Int. Symp. Information Processing in Sensor Networks (IPSN), Los Angeles, CA, 2005, pp. 91–98.
[59] D., Liu, P., Ning, and W. K., Du. Attack-resistant location estimation in sensor networks. In Proc. 4th Int. Symp. Information Processing in Sensor Networks (IPSN), Los Angeles, CA, 2005, pp. 99–106.
[60] Y., Liu and Z., Yang. Location, Localization, and Localizability. New York: Springer, 2010.
[61] J., Manyika and H. F., Durrant-Whyte. Data Fusion and Sensor Management: A Decentralized Information-Theoretic Approach. New York: Ellis Horwood, 1994.
[62] M., McGuire and K. N., Plataniotis. Dynamic model-based filtering for mobile terminal location estimation. IEEE Transactions on Vehicular Technology, 52(4):1012–1031, 2003.
[63] M., McGuire, K. N., Plataniotis, and A. N., Venetsanopoulos. Location of mobile terminals using time measurements and survey points. IEEE Transactions on Vehicular Technology, 52(4):999–1011, 2003.
[64] M., McGuire, K. N., Plataniotis, and A. N., Venetsanopoulos. Data fusion of power and time measurements for mobile terminal location. IEEE Transactions on Mobile Computing, 4(2):142–153, 2005.
[65] T. K., Moon and W. C., Stirling. Mathematical Methods and Algorithms for Signal Processing. Upper Saddle River, NJ: Prentice Hall, 2000.
[66] A. G. O., Mutambara. Decentralized Estimation and Control for Multisensor Systems. Boca Raton, FL: CRC Press, 1998.
[67] P., Perez, J., Vermaak, and A., Blake. Data fusion for visual tracking with particles. Proceedings of the IEEE, 92(3):495–513, 2004.
[68] K. N., Plataniotis, D., Androutsos, S., Vinayagamoorthy, and A. N., Venetsanopoulos. Color image processing using adaptive multichannel filters. IEEE Transactions on Image Processing, 6(7):933–949, 1997.
[69] G. J., Pottie and W. J., Kaiser. Wireless integrated network sensors. Communications of the ACM, 43(5):51–58, 2000.
[70] N. B., Priyantha, A., Chakraborty, and H., Balakrishnan. The cricket location-support system. In Proc. 6th Annu. Int. Conf. Mobile Computing and Networking (MobiCom), Boston, MA, 2000, pp. 32–43.
[71] O., Rashid, P., Coulton, and R., Edwards. Providing location based information/advertising for existing mobile phone users. Personal and Ubiquitous Computing, 12(1):3–10, 2008.
[72] B., Ristic, S., Arulampalam, and N., Gordon. Beyond the Kalman Filter: Particle Filters for Tracking Applications. Boston, MA: Artech House, 2004.
[73] T., Roos, P., Myllymäki, H., Tirri, P., Misikangas, and J., Sievänen. A probabilistic approach to WLAN user location estimation. International Journal of Wireless Information Networks, 9(3):155–164, 2002.
[74] N., Samama. Global Positioning: Technologies and Performance. New York: Wiley-Interscience, 2008.
[75] D.W., Scott. Multivariate Density Estimation. New York: John Wiley and Sons, 1992.
[76] N. K., Sharma. A weighted center of mass based trilateration approach for locating wireless devices in indoor environment. In Proc. 4th ACM Int. Workshop Mobility Management and Wireless Access, Torremolinos, 2006, pp. 112–115.
[77] J., Shawe-Taylor and N., Cristianini. Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press, 2004.
[78] B.W., Silverman. Density Estimation for Statistics and Data Analysis. London: Chapman and Hall, 1986.
[79] R., Singh, L., Macchi, C., Regazzoni, and K., Plataniotis. A statistical modelling based location determination method using fusion in WLAN. In Proc. Int. Workshop Wireless Ad-hoc Networks, 2005.
[80] S., Spiekermann. General aspects of location-based services. In J., Schiller and A., Voisard, ed., Location-Based Services. San Francisco, CA: Morgan Kaufmann Publishers, 2004.
[81] W., Stallings. IEEE 802.11: moving closer to practical wireless LANs. IT Professional, 3(3):17–23, 2001.
[82] Guolin, Sun, Jie, Chen, Wei, Guo, and K.J., Ray Liu. Signal processing techniques in network-aided positioning: a survey of state-of-the-art positioning designs. IEEE Signal Processing Magazine, 22(4):12–23, 2005.
[83] H. L., Van Trees. Detection, Estimation, and Modulation Theory. New York: John Wiley and Sons, 2001.
[84] D., Tse and P., Viswanath. Fundamentals of Wireless Communication. Cambridge: Cambridge University Press, 2004.
[85] J. B. Y., Tsui. Fundamentals of Global Positioning System Receivers. Wiley Online Library, 2000.
[86] L., Wang, W., Hu, and T., Tan. Recent developments in human motion analysis. Pattern Recognition, 36(3):585–601, 2003.
[87] R., Want, A., Hopper, V., Falcao, and J., Gibbons. The active badge location system. ACM Transactions on Information Systems (TOIS), 10(1):91–102, 1992.
[88] B.-F., Wu, C.-L., Jen, and K.-C., Chang. Neural fuzzy based indoor localization by Kalman filtering with propagation channel modeling. In Proc. IEEE Int. Conf. Systems, Man and Cybernetics, Montreal, 2007, pp. 812–817.
[89] Z., Xiang, S., Song, J., Chen, H., Wang, J., Huang, and X., Gao. A wireless LAN-based indoor positioning technology. IBM Journal of Research and Development, 48(5/6):617–626, 2004.
[90] M. A., Youssef, A., Agrawala, and A., Udaya Shankar. WLAN location determination via clustering and probability distributions. In Proc. Ist IEEE Int. Conf. Pervasive Computing and Communications, Fort Worth, TX, 2003, pp. 143–150.
[91] M., Youssef and A., Agrawala. The Horus WLAN location determination system. In Proc. 3rd Int. Conf. Mobile Systems, Applications, and Services, Seattle, WA, 2005, pp. 205–218.
[92] M., Youssef and A. K., Agrawala. Continuous space estimation for WLAN location determination systems. In IEEE 13th Int. Conf. Computer Communications and Networks, Chicago, IL, 2004.
[93] M., Youssef and A. K., Agrawala. Handling samples correlation in the Horus system. In Proc. IEEE Infocom, Hong Kong, 2004.
[94] Y., Zhu. Multisensor Decision and Estimation Fusion. Boston, MA: Kluwer Academic Publishers, 2003.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.