Skip to main content Accessibility help
  • Print publication year: 2020
  • Online publication date: April 2020

2 - Volcanotectonic Structures


Field studies of volcanotectonic structures offer a way of understanding the processes that take place inside volcanoes before eruptions. Collapse calderas and some other large-scale structures are treated separately (Chapter 5), and here the focus is on sheet intrusions, sills, inclined (cone) sheets, and, in particular, dikes. Since they supply magma to most eruptions, it is important to make detailed and accurate observations and measurements of sheet intrusions in eroded sections of active and inactive (extinct) volcanoes. All the techniques described here apply equally well to inclined sheets, so that the term ‘dike’ in the present context also includes inclined sheets. Most of the techniques also apply to sills; the special aspects of field studies of sills are discussed at the end of the chapter. The observations and measurements provide a better understanding of how dikes propagate, the field conditions that encourage dike arrest, as well as the conditions that encourage their propagation to the surface to feed volcanic eruptions. The field data, when combined with geodetic and seismic monitoring data, can be used to test analytical, analogue, and numerical models on internal processes in volcanoes.

Acocella, V., Neri, M., 2009. Dike propagation in volcanic edifices: overview and possible developments. Tectonophysics, 471, 6777.
Baer, G., 1995. Fracture propagation and magma flow in segmented dykes: field evidence and fabric analysis, Makhtesh Ramon, Israel. In Baer, G. and Heimann, A. (eds.), Physics and Chemistry of Dykes. Rotterdam: Balkema, pp. 125140.
Barnett, Z. A., Gudmundsson, A., 2014. Numerical modelling of dykes deflected into sills to form a magma chamber. Journal of Volcanology and Geothermal Research, 281, 111.
Becerril, L., Galindo, I., Gudmundsson, A., Morales, J. M., 2013. Depth of origin of magma in eruptions. Scientific Reports, 3, 2762, doi:10.1038/srep02762.
Brandsdottir, B., Einarsson, P., 1979. Seismic activity associated with the September 1977 deflation of the Krafla central volcano in NE Iceland. Journal of Volcanology and Geothermal Research, 6, 197212.
Browning, J., Drymoni, K., Gudmundsson, A., 2015. Forecasting magma-chamber rupture at Santorini volcano, Greece. Scientific Reports, 5, doi:10.1038/srep15785.
Cukur, D., Horozal, S., Kim, D. C., et al. 2010. The distribution and characteristics of igneous complexes in the northern East China Sea Shelf Basin and their implications for hydrocarbon potential. Marine Geophysical Research, 31, 299313.
Daniels, K., Kavanagh, J., Menand, T., Sparks, R., 2012. The shapes of dikes: evidence for the influence of cooling and inelastic deformation. Geological Society of America Bulletin, 124, 11021112.
Delaney, P., Pollard, D., 1981. Deformation of host rocks and flow of magma during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico. US Geological Survey Professional Paper, 1202, 161.
Eriksson, P. I., Riishuus, M. S., Sigmundsson, F., Elming, S. A., 2011. Magma flow directions inferred from field evidence and magnetic fabric studies of the Streitishvarf composite dike in east Iceland. Journal of Volcanology and Geothermal Research, 206, 3045.
Fox, P. J., Gallo, D. G., 1986. The geology of North American transform plate boundaries and their aseismic extensions. In Vogt, P. R. and Tucholke, B. E. (eds.), The Geology of North America, Volume M: The Western North Atlantic Region. Boulder, CO: Geological Society of America, pp. 157172.
Galindo, I., Gudmundsson, A., 2012. Basaltic feeder dykes in rift zones: geometry, emplacement, and effusion rates. Natural Hazards and Earth System Sciences, 12, 36833700.
Gautneb, H., Gudmundsson, A., 1992. Effect of local and regional stress fields on sheet emplacement in West Iceland. Journal of Volcanology and Geothermal Research, 51, 339356.
Geshi, N., Neri, M., 2014. Dynamic feeder dyke systems in basaltic volcanoes: the exceptional example of the 1809 Etna eruption (Italy). Frontiers in Earth Science, 2, doi:10.3389/feart.2014.00013.
Geshi, N., Kusumoto, S., Gudmundsson, A., 2010. The geometric difference between non-feeders and feeder dikes. Geology, 38, 195198.
Grandin, R., Jacques, E., Nercessian, A., 2011. Seismicity during lateral dike propagation: Insights from new data in the recent Manda Hararo–Dabbahu rifting episode (Afar, Ethiopia). Geochemistry, Geophysics, Geosystems, 12, doi:0.1029/2010GC003434.
Greenland, L. P., Okamura, A. T., Stokes, J. B., 1988. Constraints on the mechanics of the eruption. In Wolfe, E. W (ed.), The Puu Oo Eurption of Kilauea Volcano, Hawaii: Episodes Through 20, January 3, 1983 Through June 8, 1984. US Geological Survey Professional Paper, 1463. Denver, CO: US Geological Survey, pp. 155164.
Gudmundsson, A. 1983. Form and dimensions of dykes in eastern Iceland. Tectonophysics, 95, 295307.
Gudmundsson, A., 1986. Formation of dykes, feeder-dykes and the intrusion of dykes from magma chambers. Bulletin of Volcanology, 47, 537550.
Gudmundsson, A., 1990a. Dyke emplacement at divergent plate boundaries. In Parker, A. J., Rickwood, P. C. and Tucker, D. H. (eds.), Mafic Dykes and Emplacement Mechanisms. Rotterdam: Balkema, pp. 4762.
Gudmundsson, A., 1990b. Emplacement of dikes, sills and crustal magma chambers at divergent plate boundaries. Tectonophysics, 176, 257275.
Gudmundsson, A., 2009. Toughness and failure of volcanic edifices. Tectonophysics, 471, 2735.
Gudmundsson, A., 2011. Rock Fractures in Geological Processes. Cambridge: Cambridge University Press.
Gudmundsson, A., 2017. The Glorious Geology of Iceland’s Golden Circle. Berlin: Springer Verlag.
Gudmundsson, A., Lotveit, I. F., 2012. Sills as fractured hydrocarbon reservoirs: examples and models. In Spence, G. H., Redfern, J., Aguilera, R, et al. (eds.), Advances in the Study of Fractured Reservoirs. Geological Society of London Special Publications, 374. London: Geological Society of London, pp. 251271.
Gudmundsson, A., Mohajeri, N., 2013. Relations between the scaling exponents, entropies, and energies of fracture networks. Geological Society of France Bulletin, 184, 377387.
Gudmundsson, A., Lecoeur, N., Mohajeri, N., Thordarson, T., 2014. Dike emplacement at Bardarbunga, Iceland, induces unusual stress changes, caldera deformation, and earthquakes. Bulletin of Volcanology, 76, 869, doi:10.1007/s00445-014-0869-8.
Hansen, J., 2015. A numerical approach to sill emplacement in isotropic media: do saucer-shaped sills represent ‘natural’ intrusive tendencies in the shallow crust? Tectonophysics, 664, 125138.
Jerram, D., 2011. The Field Description of Igneous Rocks. Oxford: Wiley-Blackwell.
Kattenhorn, S. A., Watkeys, M. K., 1995. Blunt-ended dyke segments. Journal of Structural Geology, 11, 15351542.
Kavanagh, J. L., Sparks, R. S. J., 2011. Insights of dyke emplacement mechanics from detailed 3D dyke thickness datasets. Journal of the Geological Society of London, 168, 965978.
Kissel, C., Laj, C., Sigurdsson, H., Guillou, H., 2010. Emplacement of magma in eastern Iceland dikes: insights from magnetic fabric and rock magnetic analyses. Journal of Volcanology and Geothermal Research, 191, 7992.
Klein, F., Koyanagi, R. Y., Nakata, J. S., Tanigawa, W. R., 1987. The seismicity of Kilauea’s magma system. US Geological Survey Professional Paper, 1350, 10191185.
Kusumoto, S., Gudmundsson, A., 2014. Displacement and stress fields around rock fractures opened by irregular overpressure variations. Frontiers in Earth Science, 2, doi:10.3389/feart.2014.00007.
Kusumoto, S., Geshi, N., Gudmundsson, A., 2013. Inverse modeling for estimating fluid-overpressure distributions and stress intensity factors from arbitrary open-fracture geometry. Journal of Structural Geology, 46, 9298.
Maley, T., 1994. Field Geology Illustrated. Troutner Way, Boise (United States of America): Mineral Land Publications.
Marinoni, L.B., Gudmundsson, A., 1999. Geometry, emplacement, and arrest of dykes. Annales Tectonicæ, 13, 7192.
Marti, J., Villasenor, A., Geyer, A., Lopez, C., Tryggvason, A., 2017. Stress barriers controlling lateral migration of magma revealed by seismic tomography. Scientific Reports, 7, doi:10.1038/srep40757.
McClay, K.R., 1991. Mapping of Geological Structures. Oxford: Wiley-Blackwell.
Melin, S., 1983. Why do cracks avoid each other? International Journal of Fracture, 23, 3745.
Nemec, W., 1988. The shape of the rose. Sedimentary Geology, 59, 149152.
Peltier, A., Ferrazzini, V., Staudacher, T., Bachelery, P., 2005. Imaging the dynamics of dyke propagation prior to the 2000–2003 flank eruptions at Piton de la Fournaise, Reunion Island. Geophysical Research Letters, 32, doi:10.1029/2005GL023720.
Peltier, A., Staudacher, T., Bachelery, P., 2010. New behaviour of the Piton de la Fournaise volcano feeding system (La Réunion Island) deduced from GPS data: influence of the 2007 Dolomieu caldera collapse. Journal of Volcanology and Geothermal Research, 192, 4856.
Philipp, S. L., 2012. Fluid overpressure estimates from the aspect ratios of mineral veins. Tectonophysics, 581, 3547.
Poland, M. P., Miklius, A., Montgomery-Brown, E. K., 2014. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes. In Poland, M. P., Takahashi, T. J. and Landowski, C. M. (eds.), Characteristics of Hawaiian Volcanoes. US Geological Survey Professional Paper, 1801. Denver, CO: US Geological Survey, pp. 179234.
Pollard, D. D., Aydin, A. 1984. Propagation and linkage of oceanic ridge segments. Journal of Geophysical Research, 89, 1001710028.
Pollard, D. D, Muller, O., 1976. The effect of gradients in regional stress and magma pressure on the form of sheet intrusions in cross section. Journal of Geophysical Research, 81, 975984.
Pollard, D. D., Segall, P., 1987. Theoretical displacements and stresses near fractures in rocks: with applications to faults, joints, veins, dikes, and solution surfaces. In Atkinson, B. K. (ed.), Fracture Mechanics of Rock. London: Academic Press, pp. 277349.
Polteau, S., Mazzini, A., Galland, O., Planke, S., Malthen-Sorensen, A., 2008. Saucer-shaped intrusions: occurrences, emplacement and implications. Earth and Planetary Science Letters, 266, 195204.
Rivalta, E., Taisne, B., Bunger, A. P., Katz, R. F., 2015. A review of mechanical models of dike propagation: schools of thought, results and future directions. Tectonophysics, 638, 142.
Rubin, A. M., 1995. Propagation of magma-filled cracks. Annual Reviews of Earth and Planetary Sciences, 23, 287336.
Sigmundsson, F., Hreinsdottir, S., Hooper, A., et al., 2010. Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature, 468, 426430.
Sigmundsson, F., Hooper, A., Hreinsdottir, S., et al., 2015. Segmented lateral dyke growth in a rifting event at Bardarbunga Volcanic System, Iceland. Nature, 517, 191195.
Takeuchi, S., 2004. Precursory dike propagation control of viscous magma eruptions. Geology, 32, 10011004.
Thorpe, R. S., Brown, G. C., 1985. The Field Description of Igneous Rocks. Maidenhead: Open University Press.
Tibaldi, A., 2015. Structure of volcano plumbing systems: A review of multi-parametric effects. Journal of Volcanology and Geothermal Research, 298, 85135.
Townsend, M., Pollard, D. D., Smith, R., 2017. Mechanical models for dikes: a third school of thought. Tectonophysics, 703–704, 98118.
Uhira, K., Baba, T., Mori, H., Katayama, H., Hamada, N., 2005. Earthquake swarms preceding the 2000 eruption of Miyakejima volcano, Japan. Bulletin of Volcanology, 67, 219230.
Urbani, S., Trippanera, D., Porreca, M., Kissel, C., Acocella, V., 2015. Anatomy of an extinct magmatic system along a divergent plate boundary: Alftafjordur, Iceland. Geophysical Research Letters, 42, doi:10.1002/2015GL065087.
Walker, G. P. L. 1959. Geology of the Reydarfjordur area, eastern Iceland. Quarterly Journal of the Geological Society of London, 114, 367393.
Walker, G. P. L., 1960. Zeolite zones and dike distribution in relation to the structure of the basalts of eastern Iceland. Journal of Geology, 68, 515527.
Wright, T. J., Sigmundsson, F., Pagli, C., et al., 2012. Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nature Geoscience, 5, 250.