Skip to main content Accessibility help
×
Hostname: page-component-76dd75c94c-8c549 Total loading time: 0 Render date: 2024-04-30T08:02:29.641Z Has data issue: false hasContentIssue false

6 - Formation and Dynamics of Magma Chambers and Reservoirs

Published online by Cambridge University Press:  18 April 2020

Agust Gudmundsson
Affiliation:
Royal Holloway, University of London
Get access

Summary

A magma chamber is the heart of every polygenetic volcano. Many, presumably most, polygenetic volcanoes have two magma chambers: one shallow crustal chamber and another deep-seated chamber, which we here refer to as a reservoir. Together, the reservoir and the shallow chamber constitute a double magma chamber. The complex interaction between the source reservoir and the chamber determines the frequency of injection of inclined sheets and dikes. Together with the mechanical layering and local stresses in the crustal segment, the double chamber also largely controls the frequency and sizes of eruptions in the volcano to which it supplies magma. We have learned that most shallow chambers evolve from sills and are located in the upper crust. The deep-seated reservoirs, by contrast, are normally located in the lower crust or upper mantle. If located in the crust, they may also evolve from sills; if located in the upper mantle, they may evolve as magma accumulations in regions of low potential energy. The accurate determination of the location of active magma chambers is generally difficult.

Type
Chapter
Information
Volcanotectonics
Understanding the Structure, Deformation and Dynamics of Volcanoes
, pp. 272 - 324
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References and Suggested Reading

Alfaro, R., Brandsdottir, B., Rowlands, D. P., et al., 2007. Structure of the Grimsvötn central volcano under the Vatnajökull icecap. Geophysical Journal International, 168, 863876.CrossRefGoogle Scholar
Andrew, R. E. B., Gudmundsson, A., 2007. Distribution, structure, and formation of Holocene lava shields in Iceland. Journal of Volcanology and Geothermal Research, 168, 137154.Google Scholar
Auger, E., Gasparini, P., Virieax, J., Zollo, A., 2001. Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science, 294, 15101512.Google Scholar
Baran, J. M., Cochran, J. R., Carbotte, S. M., Nedimovic, M. R., 2005. Variations in upper crustal structure due to variable mantle temperature along the Southeast Indian Ridge. Geochemistry, Geophysics, Geosystems, 6, doi:10.1029/2005GC000943.Google Scholar
Beachly, M. W., Hooft, E. E. E., Toomey, D. R., Waite, G. P., 2012. Upper crustal structure of Newberry Volcano from P-wave tomography and finite difference waveform modeling. Journal of Geophysical Research, 117, doi:10.1029/2012JB009458.Google Scholar
Bear, J., 1972. Dynamics of Fluids in Porous Media. Amsterdam: Elsevier.Google Scholar
Becerril, L., Galindo, I., Gudmundsson, A., Morales, J. M., 2013. Depth of origin of magma in eruptions. Scientific Reports, 3, 2762, doi:10.1038/srep02762.CrossRefGoogle ScholarPubMed
Bjarnason, I. Th., 2008. An Iceland hotspot saga. Jokull, 58, 316.Google Scholar
Björnsson, A., 1985. Dynamics of crustal rifting in NE Iceland. Journal of Geophysical Research, 90, 1015110162.CrossRefGoogle Scholar
Blake, D. H., 1966. The net-veined complex of the Austurhorn intrusion, southeastern Iceland. Journal of Geology, 74, 891907.Google Scholar
Brandsdottir, B., Menke, W. H., 2008. The seismic structure of Iceland. Jokull, 58, 1734.Google Scholar
Browning, J., Gudmundsson, A., 2015a. Surface displacements resulting from magma-chamber roof subsidence, with application to the 2014–2015 Bardarbunga–Holuhraun volcanotectonic episode in Iceland. Journal of Volcanology and Geothermal Research, 308, 8298.Google Scholar
Browning, J., Gudmundsson, A., 2015b. Caldera faults capture and deflect inclined sheets: An alternative mechanism of ring-dike formation. Bulletin of Volcanology, 77, 889, doi:10.1007/s00445-014-0889-4.Google Scholar
Browning, J., Drymoni, K., Gudmundsson, A., 2015. Forecasting magma-chamber rupture at Santorini volcano, Greece. Scientific Reports, 5, doi:10.1038/srep15785.CrossRefGoogle ScholarPubMed
Canales, J. P., Nedimovic, M. R., Kent, G. M., Carbotte, S. M., Detrick, R. S., 2009. Seismic reflection images of a near-axis melt sill within the lower crust at the Juan de Fuca ridge. Nature, 460, 8993.Google Scholar
Carbotte, S. M, Detrick, R. S., Harding, A., et al., 2006. Rift topography linked to magmatism at the intermediate spreading Juan de Fuca Ridge. Geology, 34, 209212.CrossRefGoogle Scholar
Cavalcante, G. C. G., Vauchez, A., Merlet, C., et al., 2014. Thermal conditions during deformation of partially molten crust from Titani geothermometry: rheological implications for the anatectic domain of the Araçuaí belt, Eastern Brazil. Solid Earth Discussions, 6, 12991333.Google Scholar
Chaussard, E., Amelung, F., 2014. Regional controls on magma ascent and storage in volcanic arcs. Geochemistry, Geophysics, Geosystems, 15, doi:10.1002/2013GC005216.Google Scholar
Chen, Y., 2004. Modelling the thermal structure of the oceanic crust. In German, C., Lin, J., Parson, L. M. (eds.), Mid-Ocean Ridges: Hydrothermal Interactions between the Lithosphere and Oceans. Geophysical Monograph 148. Washington, DC.: American Geophysical Union.Google Scholar
Crawford, W. C., Webb, S. C., 2002. Variations in the distribution of magma in the lower crust and at the Moho beneath the East Pacific Rise at 9 degrees–10 degrees N. Earth and Planetary Science Letters, 203, 117130.Google Scholar
de Zeeuw-van Dalfsen, E., Pedersen, R., Sigmundsson, F., Pagli, C., 2004. Satellite radar interferometry 1993–1999 suggests deep accumulation of magma near the crust-mantle boundary at the Krafla volcanic system, Iceland. Geophysical Research Letters, 31, doi:10.1029/2004GL020059.Google Scholar
de Zeeuw-van Dalfsen, E., Pedersen, R., Hooper, A., Sigmundsson, F., 2012. Subsidence of Askja caldera 2000–2009: Modelling of deformation processes at an extensional plate boundary, constrained by time series InSAR analysis. Journal of Volcanology and Geothermal Research, 213–214, 7282.Google Scholar
Detrick, R. S., Sinton, J. M., Ito, G., et al., 2002. Correlated geophysical, geochemical, and volcanological manifestation of plume-ridge interaction along the Galapagos Spreading Center. Geochemistry, Geophysics, Geosystems, 3, doi:1029/2002gc000350.CrossRefGoogle Scholar
Dobran, F., 2001. Volcanic Processes. Mechanisms in Material Transport. New York, NY: Kluwer.CrossRefGoogle Scholar
Fagents, S. A., Gregg, T. K. P., Lopes, R. M. C. (eds.), 2013. Modeling Volcanic Processes: The Physics and Mathematics of Volcanism. Cambridge: Cambridge University Press.Google Scholar
Fleisch, D., 2012. A Students Guide to Vectors and Tensors. Cambridge: Cambridge University Press.Google Scholar
Furman, T., Meyer, P. S., Frey, F., 1992. Evolution of Icelandic central volcanoes: evidence from the Austurhorn intrusion, southeastern Iceland. Bulletin of Volcanology, 55, 4562.CrossRefGoogle Scholar
Galindo, I., Gudmundsson, A., 2012. Basaltic feeder dykes in rift zones: geometry, emplacement, and effusion rates. Natural Hazards and Earth System Sciences, 12, 36833700.CrossRefGoogle Scholar
Gonnermann, H. M., Manga, M., 2013. Dynamics of magma ascent in the volcanic conduit. In Fagents, S. A., Gregg, T. K. P., Lopes, R. M. C. (eds.), Modeling Volcanic Processes. Cambridge University Press, Cambridge, pp. 5584.Google Scholar
Greenland, L. P., Rose, W. I., Stokes, J. B., 1985. An estimate of gas emissions and magmatic gas content from Kilauea volcano. Geochimica et Cosmochimica Acta, 49, 125129.Google Scholar
Greenland, L. P., Okamura, A. T., Stokes, J. B., 1988. Constraints on the mechanics of the eruption. In Wolfe, E. W (ed.), The Puu Oo Eruption of Kilauea Volcano, Hawaii: Episodes Through 20, January 3, 1983 Through June 8, 1984. US Geological Survey Professional Paper, 1463. Denver, CO: US Geological Survey, pp. 155164.Google Scholar
Griffith, D. J., 2014. Introduction to Electrodynamics. Cambridge: Pearson.Google Scholar
Gudmundsson, A., 1987. Formation and mechanics of magma reservoirs in Iceland. Geophysical Journal of the Royal Astronomical Society, 91, 2741.Google Scholar
Gudmundsson, A., 1990. Emplacement of dikes, sills and crustal magma chambers at divergent plate boundaries. Tectonophysics, 176, 257275.Google Scholar
Gudmundsson, A., 1995. The geometry and growth of dykes. In Baer, G., Heimann, A. (eds.), Physics and Chemistry of Dykes. Rotterdam: Balkema, pp. 2334.Google Scholar
Gudmundsson, A., 2006. How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes. Earth-Science Reviews, 79, 131.Google Scholar
Gudmundsson, A., 2007. Conceptual and numerical models of ring-fault formation. Journal of Volcanology and Geothermal Research, 164, 142160.Google Scholar
Gudmundsson, A., 2011. Rock Fractures in Geological Processes. Cambridge: Cambridge University Press.Google Scholar
Gudmundsson, A., 2012. Magma chambers: formation, local stresses, excess pressures, and compartments. Journal of Volcanology and Geothermal Research, 237–238, 1941.Google Scholar
Gudmundsson, A., 2016. The mechanics of large volcanic eruptions. Earth-Science Reviews, 163, 7293.Google Scholar
Gudmundsson, A., 2017. The Glorious Geology of Iceland’s Golden Circle. Berlin: Springer Verlag.Google Scholar
Gudmundsson, A., Brenner, S. L., 2004. How mechanical layering affects local stresses, unrests, and eruptions of volcanoes. Geophysical Research Letters, 31, doi.org/10.1029/2004GL020083.CrossRefGoogle Scholar
Gudmundsson, A., Oskarsson, N., Gronvold, K., et al., 1992. The 1991 eruption of Hekla, Iceland.Bulletin of Volcanology, 54, 238246.Google Scholar
Gudmundsson, A., Lecoeur, N., Mohajeri, N., Thordarson, T., 2014. Dike emplacement at Bardarbunga, Iceland, induces unusual stress changes, caldera deformation, and earthquakes. Bulletin of Volcanology, 76, 869, doi:10.1007/s00445-014-0869-8.Google Scholar
Guo, X., 2013. Density and Compressibility of FeO-Bearing Silicate Melt: Relevance to Magma Behavior in the Earth. PhD Thesis, University of Michigan, Ann Arbor, MI.Google Scholar
Harris, A. J. L., Murray, J. B., Aries, S. E., et al., 2000. Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. Journal of Volcanology and Geothermal Research, 102, 237270.Google Scholar
Hollingsworth, J., Leprince, S., Ayoub, F., Avouac, J. P., 2012. Deformation during the 1975–1984 Krafla rifting crisis, NE Iceland, measured from historical optical imagery. Journal of Geophysical Research, 117, doi:10.1029/2012JB009140.CrossRefGoogle Scholar
Hreinsdottir, S., Sigmundsson, F., Roberts, M. J., et al., 2014. Volcanic plume height correlated with magma-pressure change at Grimsvötn Volcano, Iceland. Nature Geoscience, 7, 214218, https://doi.org/10.1038/ngeo2044.CrossRefGoogle Scholar
Kent, G. M., Harding, A. J., Orcutt, J. A. 1990. Evidence for a smaller magma chamber beneath the East Pacific Rise at 9°30’ N. Nature 344, 650653.CrossRefGoogle Scholar
Koulakov, I., Gordeev, E. I., Dobretsov, N. L., et al., 2011. Feeding volcanoes of the Kluchevskoy group from the results of local earthquake tomography. Geophysical Research Letters, 38, L09305, doi:10.1029/2011GL046957.Google Scholar
Kress, V. C., Carmichael, I. S. E., 1991. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology, 108, 8292.Google Scholar
Lauthold, J., Muntener, O., Baumgartener, L. P., et al., 2014. A detailed geochemical study of a shallow arc-related laccolith; the Torres del Paine Mafic Complex (Patagonia). Journal of Petrology, 54, 273303.Google Scholar
Lin, G., Amelung, F. Y., Lavallée, Y., Okubo, P. G., 2014 . Seismic evidence for a crustal magma reservoir beneath the upper east rift zone of Kilauea volcano, Hawaii. Geology, 42, 187190.CrossRefGoogle Scholar
Macdonald, K. C., 1982. Mid-ocean ridges: fine scale tectonic, volcanic and hydrothermal processes within a plate boundary. Annual Review of Earth and Planetary Sciences, 10, 155190.Google Scholar
Malfait, W. J., Sanchez-Valle, C., Ardia, P., Médard, E., Lerch, P., 2011. Compositional dependent compressibility of dissolved water in silicate glasses. American Mineralogist, 96, 14021409.Google Scholar
Michel, J., Baumgartner, L., Putlitz, B., Schaltegger, U., Ovtcharova, M., 2008. Incremental growth of the Patagonian Torres del Paine laccolith over 90 k.y. Geology, 36, 459462, doi:10.1130/G24546A.1.Google Scholar
Murase, T., McBirney, A. R., 1973. Properties of some common igneous rocks and their melts at high temperatures. Geological Society of America Bulletin, 84, 35633592.Google Scholar
Oladottir, B., Sigmarsson, O., Larsen, G., Thordarson, T., 2008. Katla volcano, Iceland: magma composition, dynamics and eruption frequency as recorded by Holocene tephra layers. Bulletin of Volcanology, 70, 475493.Google Scholar
Opheim, J. A., Gudmundsson, A., 1989. Formation and geometry of fractures, and related volcanism, of the Krafla Fissure Swarm, Northeast Iceland. Geological Society of America Bulletin, 101, 16081622.Google Scholar
Orcutt, J. A. 1987. Structure of the earth: oceanic crust and uppermost mantle. Reviews of Geophysics, 25, 11771196.Google Scholar
Pagli, C., Wright, T. J., Ebinger, C. J., et al., 2012. Shallow axial chamber at the slow-spreading Erta Ale Ridge. Nature Geoscience, doi:10.1038/NGEO1414.Google Scholar
Paulatto, M., Annen, C., Henstock, T. J., et al., 2012. Magma chamber properties from integrated seismic tomography and thermal modeling at Montserrat. Geochemistry, Geophysics, Geosystems, 13, Q01014, doi:10.1029/2011GC003892.Google Scholar
Poland, M. P., Takahashi, T. J., Landowski, C. M. (eds.), 2014a. Characteristics of Hawaiian Volcanoes. US Geological Survey Professional Paper, 1801. Denver, CO: US Geological Survey.Google Scholar
Poland, M. P., Miklius, A., Montgomery-Brown, E. K., 2014b. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes. In Poland, M. P., Takahashi, T. J., Landowski, C. M. (eds.), Characteristics of Hawaiian Volcanoes. US Geological Survey Professional Paper, 1801. Denver, CO: US Geological Survey, pp. 179234.Google Scholar
Reverso, T., Vandemeulebrouck, J., Jouanne, F., et al., 2014. A two-magma chamber model as a source of deformation at Grimsvötn Volcano, Iceland. Journal of Geophysical Research, 119, 46664683.Google Scholar
Ritchie, D., Gates, A. E., 2001. Encyclopedia of Earthquakes and Volcanoes. New York, NY: Facts on File.Google Scholar
Roobol, M. J., 1974. Geology of the Vesturhorn intrusion, SE Iceland. Geological Magazine, 111, 273285.CrossRefGoogle Scholar
Rossi, M. J., 1996. Morphology and mechanism of eruption of postglacial lava shields in Iceland. Bulletin of Volcanology, 57, 530540.Google Scholar
Saemundsson, K., Sigmundsson, F., 2013. The North Volcanic Zone, Krafla. In Solnes, J., Sigmundsson, F., Bessason, B. (eds.), Natural Hazards in Iceland: Volcanic Eruptions and Earthquakes. Reykjavik: Vidlagatrygging/Haskolautgafan, pp. 324337 (in Icelandic).Google Scholar
Searle, R., 2013. Mid-Ocean Ridges. Cambridge: Cambridge University Press.Google Scholar
Seifert, R., 2013 Compressibility of Volatile-Bearing Magmatic Liquids. PhD Thesis, ETH, Zurich.Google Scholar
Sheth, H., 2018. A Photographic Atlas of Flood Basalt Volcanism. Berlin: Springer.Google Scholar
Singh, S. C., Crawford, W. C., Carton, H., et al., 2006. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field. Nature, 442, 10291032.CrossRefGoogle ScholarPubMed
Sinha, M. C., Constable, S. C., Peirce, C., et al., 1998. Magmatic processes at slow-spreading ridges: implications of the RMESSES experiment at 57°45’ N on the Mid-Atlantic Ridge. Geophysical Journal International, 135, 731745.Google Scholar
Soosalu, H., Key, J., White, R.S., et al. 2010. Lower-crustal earthquakes caused by magma movement beneath Askja volcano on the north Iceland rift. Bulletin of Volcanology, 72, 5562.Google Scholar
Sturkell, E., Einarsson, P., Sigmundsson, F., et al., 2006. Volcano geodesy and magma dynamics in Iceland. Journal of Volcanology and Geothermal Research, 150, 1434.Google Scholar
Sturkell, E., Sigmundsson, F., Geirsson, H., et al., 2008. Multiple volcano deformation sources in a post-rifting period: 1989–2005 behaviour of Krafla, Iceland constrained by levelling, tilt and GPS observations. Journal of Volcanology and Geothermal Research, 177, 405417.Google Scholar
Sturkell, E., Einarsson, P., Sigmundsson, F. et al., 2010. Katla and Eyjafjallajökull volcanoes. Developments in Quaternary Sciences, 13, 521.CrossRefGoogle Scholar
Tenzer, R., Gladkikh, V., 2014. Assessment of density variations of marine sediments with ocean and sediment depths. The Scientific World Journal, 2, doi:10.1155/2014/823296Google Scholar
Thorarinsson, S. B., Tegner, C., 2009. Magma chamber processes in central volcanic systems of Iceland: constraints from layered gabbro of the Austurhorn intrusive complex. Contributions to Mineralogy and Petrology, 158, 223244.Google Scholar
Thordarson, T., Hoskuldsson, A., 2008. Postglacial volcanism in Iceland. Jokull, 58, 197228.Google Scholar
Thordarson, T., Larsen, G., 2007. Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history. Journal of Geodynamics, 43, 118152.Google Scholar
Tryggvason, E. 1984. Widening of the Krafla Fissure Swarm during the 1975–1981 volcano-tectonic episode. Bulletin of Volcanology, 47, 4769.Google Scholar
Tryggvason, E. 1986. Multiple magma reservoirs in a rift zone volcano: ground deformation and magma transport during the September 1984 eruption of Krafla, Iceland. Journal of Volcanology and Geothermal Research, 28, 144.Google Scholar
Walker, G. P. L., 1965. Some aspects of Quaternary volcanism in Iceland. Quaternary Journal of the Geological Society, 49, 2540.Google Scholar
Wang, H. F., 2000. Theory of Linear Poroelasticity. Princeton, NJ: Princeton University Press.Google Scholar
Williams, H., McBirney, A. R., 1979. Volcanology. San Francisco, CA: Freeman.Google Scholar
Woods, A. W., Huppert, H. E., 2003. On magma chamber evolution during slow effusive eruptions. Journal of Geophysical Research, 108, 2403, doi:10.1029/2002JB002019.CrossRefGoogle Scholar
Zollo, A., Maercklin, N., Vassallo, M., et al., 2008. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophysical Research Letters, 35, L12306, doi:10.1029/2008GL034242.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×