Skip to main content Accessibility help
  • Print publication year: 2020
  • Online publication date: April 2020

5 - Volcanotectonic Processes


One principal aim of volcanotectonic studies is to provide a theoretical framework that makes it possible to make reliable deterministic or probabilistic forecasts of volcanotectonic events. These events, in turn, depend on volcanotectonic processes inside the volcanoes. In the previous chapters we have discussed some of the main observational aspects of volcanotectonics, both geological and geophysical, and defined several of the basic concepts. In order to bring into focus those field observations that are useful for understanding the main processes leading to eruptions, vertical or lateral collapses, and related events, we need to know the basic physics that controls the processes. Here we provide an overview of some principal processes that control volcanotectonic events, emphasising elementary physics, particularly mechanics, and the quantitative aspects of volcanotectonics. Many of these processes are elaborated in later chapters.

Amelung, F., Jonsson, S., Zebker, H., Segall, P., 2000. Widespread uplift and ‘trapdoor’ faulting on Galapagos volcanoes observed with radar interferometry. Nature, 407, 993996.
Anderson, E. M., 1942. The Dynamics of Faulting and Dyke Formation with Application to Britain. Edinburgh: Oliver and Boyd.
Beget, J. E., Kienle, J., 1992. Cyclic formation of debris avalanches at Mount St Augustine Volcano. Nature, 356, 701704.
Blake, D. H., 1966. The net-veined complex of the Austurhorn intrusion, southeastern Iceland. Journal of Geology, 74, 891907.
Browning, J., Gudmundsson, A., 2015a. Surface displacements resulting from magma-chamber roof subsidence, with application to the 2014–2015 Bardarbunga-Holuhraun volcanotectonic episode in Iceland. Journal of Volcanology and Geothermal Research, 308, 8298.
Browning, J., Gudmundsson, A., 2015b. Caldera faults capture and deflect inclined sheets: an alternative mechanism of ring-dike formation. Bulletin of Volcanology, 77, 889, doi:10.1007/s00445-014-0889-4.
Bunger, A. P., Cruden, A. R., 2011. Modeling the growth of laccoliths and large mafic sills: role of magma body forces. Journal of Geophysical Research, 116, B02203, doi:10.1029/2010JB007648.
Carslaw, H., Jaeger, J.C., 1959. Conduction of Heat in Solids. Oxford: Oxford University Press.
Cruden, A. R., 1998. On the emplacement of tabular granites. Journal of the Geological Society of London, 155, 853862.
Fagents, S. A., Gregg, T. K. P., Lopes, R. M. C. (eds.), 2013. Modeling Volcanic Processes: The Physics and Mathematics of Volcanism. Cambridge: Cambridge University Press.
Fedotov, S. A., Chirkov, A. M., Gusev, N. A., Kovalev, G. N., Slezin, Yu. B., 1980. The large fissure eruption in the region of Plosky Tolbachik Volcano in Kamchatka, 1975–1976. Bulletin of Volcanology, 43, 4760.
Filson, J., Simkin, T., Leu, L. 1973. Seismicity of a caldera collapse: Galapagos Islands 1968. Journal of Geophysical Research, 78, 85918622.
Furman, T., Meyer, P. S., Frey, F., 1992. Evolution of Icelandic central volcanoes: evidence from the Austurhorn intrusion, southeastern Iceland. Bulletin of Volcanology, 55, 4562.
Galindo, I., Gudmundsson, A., 2012. Basaltic feeder dykes in rift zones: geometry, emplacement, and effusion rates. Natural Hazards and Earth System Sciences, 12, 36833700.
Galland, O., Scheibert, J., 2013. Analytical model of surface uplift above axisymmetric flat-lying magma intrusions: implications for sill emplacement and geodesy. Journal of Volcanology and Geothermal Research, 253, 114130.
Gautneb, H., Gudmundsson, A., Oskarsson, N., 1989. Structure, petrochemistry, and evolution of a sheet swarm in an Icelandic central volcano. Geological Magazine, 126, 659673.
Geshi, N., Neri, M., 2014. Dynamic feeder dyke systems in basaltic volcanoes: the exceptional example of the 1809 Etna eruption (Italy). Frontiers in Earth Science, 2, doi:10.3389/feart.2014.00013.
Geshi, N., Shimano, T., Chiba, T., Nakada, S., 2002. Caldera collapse during the 2000 eruption of Miyakejima volcano, Japan. Bulletin of Volcanology, 64, 5568.
Geshi, N., Kusumoto, S., Gudmundsson, A., 2010. The geometric difference between non-feeders and feeder dikes. Geology, 38, 195198.
Gordon, J. E., 1976. The New Science of Strong Materials. London: Penguin.
Gretener, P. E. 1969. On the mechanics of the intrusion of sills. Canadian Journal of Earth Sciences, 6, 14151419.
Gudmundsson, A., 1986. Formation of crustal magma chambers in Iceland. Geology, 14, 164166.
Gudmundsson, A., 1990. Emplacement of dikes, sills and crustal magma chambers at divergent plate boundaries. Tectonophysics, 176, 257275.
Gudmundsson, A., 2007. Conceptual and numerical models of ring-fault formation. Journal of Volcanology and Geothermal Research, 164, 142160.
Gudmundsson, A., 2009. Toughness and failure of volcanic edifices. Tectonophysics, 471, 2735.
Gudmundsson, A., 2011a. Rock Fractures in Geological Processes. Cambridge: Cambridge University Press.
Gudmundsson, A., 2011b. Deflection of dykes into sills at discontinuities and magma-chamber formation. Tectonophysics, 500, 5064.
Gudmundsson, A., 2012. Magma chambers: formation, local stresses, excess pressures, and compartments. Journal of Volcanology and Geothermal Research, 237 238, 1941 .
Gudmundsson, A., 2015. Collapse-driven large eruptions. Journal of Volcanology and Geothermal Research, 304, 110.
Gudmundsson, A., Nilsen, K., 2006. Ring-faults in composite volcanoes: structures, models and stress fields associated with their formation. In Troise, C., De Natle, G., Kilburn, C. R. J. (eds.), Mechanism of Activity and Unrest at Large Calderas. Geological Society of London Special Publications, 269. London: Geological Society of London, pp. 83108.
Gudmundsson, A., Pasquare, F.A., Tibaldi, A., 2018. Dykes, sills, laccoliths, and inclined sheets in Iceland. In Breitkreuz, C., Rocchi, S. (eds), Physical Geology of Shallow Magmatic Systems: Dykes, Sills and Laccoliths. Berlin: Springer, pp. 363376.
Hartley, M. E., Thordarson, T., 2013. Formation of Öskjuvatn caldera at Askja, North Iceland: mechanism of caldera collapse and implications for the lateral flow hypothesis. Journal of Volcanology and Geothermal Research, 227–228, 85101.
Hartley, M. E., Thordarson, T., de Joux, A., 2016. Postglacial eruptive history of the Askja region, North Iceland. Bulletin of Volcanology, 78, doi:10.1007/s00445-016-1022-7.
Jaeger, J. C., 1964. Thermal effects of intrusions. Reviews of Geophysics, 2, 443466.
Jakobsdottir, S., 2008. Seismicity in Iceland 1994–2007. Jokull, 58, 75100.
Lauthold, J., Muntener, O., Baumgartener, L. P., et al., 2014. A detailed geochemical study of a shallow arc-related laccolith: the Torres del Paine Mafic Complex (Patagonia). Journal of Petrology, 54, 273303.
Martì, J., Gudmundsson, A., 2000. The Las Canadas caldera (Tenerife, Canary Islands): an overlapping collapse caldera generated by magma-chamber migration. Journal of Volcanology and Geothermal Research, 103, 161173.
Michel, J., Baumgartner, L., Putlitz, B., Schaltegger, U., Ovtcharova, M., 2008. Incremental growth of the Patagonian Torres del Paine laccolith over 90 k.y. Geology, 36, 459462, doi:10.1130/G24546A.1.
Moore, J.G., Normark, W. R., Holcomb, R.T., 1994. Giant Hawaiian landslides. Annual Review of Earth and Planetary Sciences, 22, 119144.
Neal, C. A., Brantley, S. R., Antolik, J. L., et al., 2019. The 2018 rift eruption and summit collapse of Kilauea Volcano. Science, 363, 367374.
Newhall, C. G., Dzurisin, D., 1988. Historical Unrest of Large Calderas of the World. Reston, VA: US Geological Survey.
Pollard, D. D., Johnson, A. M., 1973. Mechanics of growth of some laccolithic intrusions in the Henry mountains, Utah, II. Bending and failure of overburden layers and sill formation. Tectonophysics, 18, 311354.
Reddy, J. N., 2002. Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. Hoboken, NJ: Wiley.
Reddy, J. N., 2003. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd edn. Boca Raton, FL: CRC Press.
Ritchie, D., Gates, A. E., 2001. Encyclopedia of Earthquakes and Volcanoes. New York, NY: Facts on File.
Secor, D. T., 1965. Role of fluid pressure in jointing. American Journal of Science, 263, 633646.
Sigurdsson, H., Houghton, B. F., McNutt, S. R., Rymer, H., Stix, J. (eds.), 2000. Encylopedia of Volcanoes. New York, NY: Academic Press.
Tibaldi, A., 2001. Multiple sector collapses at Stromboli volcano, Italy: how they work. Bulletin of Volcanology, 63, 112125.
Tibaldi, A., Corazzato, C., Apuani, T., Cancelli, A., 2003. Deformation at Stromboli volcano (Italy) revealed by rock mechanics and structural geology. Tectonophysics, 361, 187204.
Tibaldi, A., Bistacchi, A., Pasquare, F. A., Vezzoli, L., 2006. Extensional tectonics and volcano lateral collapses: insights from Ollague volcano (Chile–Bolivia) and analogue modelling. Terra Nova, 18, 282289.
Williams, H., McBirney, A. R., 1979. Volcanology. San Francisco, CA: Freeman.
Wright, T. J., Sigmundsson, F., Pagli, C., et al., 2012. Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nature Geoscience, 5, 250.