Skip to main content Accessibility help
×
Home
  • Print publication year: 2011
  • Online publication date: May 2011

23 - Understanding the role of fog in forest hydrology: stable isotopes as tools for determining input and partitioning of cloud water in montane forests

from Part III - Hydrometeorology of tropical montane cloud forest

Summary

ABSTRACT

Understanding the hydrology of tropical montane cloud forests (TMCF) has become essential as deforestation of mountain areas proceeds at an increased rate worldwide. Passive and active cloud water collectors, throughfall and stemflow collectors, visibility or droplet size measurements, and micrometeorological sensors are typically used to measure fog water inputs to ecosystems. In addition, stable isotopes may be used as a natural tracer for fog and rain. Previous studies have shown that the isotopic signature of fog tends to be more enriched in the heavier isotopes 2H and 18O than that of rain, due to differences in condensation temperature and history. Differences between fog and rain isotopes are largest for synoptic-scale rain storms vs. local fogs or orographic clouds. Isotopic differences have also been observed between locally generated rain and fog on mountains with orographic clouds, but only a few studies have been conducted. Quantifying fog deposition using isotope methods is more difficult in forests receiving mixed precipitation, due to limitations in the ability of sampling equipment to separate fog from rain.

This chapter describes the various types of fog most relevant to MCF and the importance of fog water deposition in the hydrological budget. A brief overview of isotope hydrology provides the background needed to understand isotope applications in cloud forests. A summary of previous work explains isotopic differences between rain and fog in different environments, and how monitoring the isotopic signature of surface water, soil water, and tree sap can yield estimates of the contribution of fog water to streamflow, recharge, and transpiration.

References
Allison, G. B., Barnes, C. J., and Hughes, M. W. (1983). Distribution of deuterium and oxygen-18 in dry soils. II. Experimental. Journal of Hydrology 64: 377–397.
Aravena, R., Suzuki, O., and Pollastri, A. (1989). Coastal fog and its relation to groundwater in the IV region of northern Chile. Chemical Geology (Isotope Geoscience Section) 79: 83–91.
Barnes, C. J., and Allison, G. B. (1983). The distribution of oxygen-18 and deuterium in dry soils. I. Theory. Journal of Hydrology 60: 141–156.
Barnes, C. J., and Turner, J. V. (1998). Isotopic exchange in soil water. In Isotope Tracers in Catchment Hydrology, eds. Kendall, C. and McDonnell, J. J., pp. 137–163. Amsterdam: Elsevier.
Brodersen, C., Pohl, S., Lindenlaub, M., Leibundgut, C., and Wilpert, K. (2000). Influence of vegetation structure on isotope content of throughfall and soil water. Hydrological Processes 14: 1439–1448.
Bruijnzeel, L. A. (2000). Forest hydrology. In The Forest Handbook, ed. Evans, J. C., pp. 301–343. Oxford, UK: Blackwell Scientific.
Bruijnzeel, L. A. (2001). Hydrology of tropical montane cloud forests: a reassessment. Land Use and Water Resources Research 1: 1–8.
Bruijnzeel, L. A., Eugster, W., and Burkard, R. (2005). Fog as an input to the hydrological cycle. In Encyclopaedia of Hydrological Sciences, eds. Anderson, M. G. and McDonnell, J. J., pp. 559–582. Chichester, UK: John Wiley.
Burkard, R. (2003). Fogwater flux measurements above different vegetation canopies. Ph.D. thesis, University of Bern, Bern, Switzerland.
Burkard, R., Bützberger, P., and Eugster, W. (2003). Vertical fogwater flux measurements above an elevated forest canopy at the Lägeren research site, Switzerland. Atmospheric Environment 37: 2979–2990.
Buttle, J. M. (1998). Fundamentals of small catchment hydrology. In Isotope Tracers in Catchment Hydrology, eds. Kendall, C. and McDonnell, J. J., pp. 1–49. Amsterdam: Elsevier.
Clark, I. D., Fritz, P., Quinn, O. P., et al. (1987). Modern and fossil groundwater in an arid environment: a look at the hydrogeology of southern Oman. In Symposium on Isotope Techniques in Water Resources Development, pp. 167–187. Vienna: International Atomic Energy Agency.
Clark, I. D., and Fritz, P. (1997). Environmental Isotopes in Hydrogeology. New York: CRC Press.
Corbin, J. D., Thomsen, M. A., Dawson, T. E., and D'Antonio, C. M. (2005). Summer water use by California coastal prairie grasses: fog, drought, and community composition. Oecologia 145: 511–521.
Craig, H. (1961). Isotopic variations in meteoric waters. Science 133: 1702–1703.
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus 16: 436–468.
Daube, B. C., Flagan, R. C., and Hoffmann, M. R. (1986). Active Cloudwater Collector. US Patent No. 4 697 462.
Daube, B., Kimball, K. D., Lamar, P. A., and Weathers, K. C. (1987). Two new ground-level cloud water sampler designs which reduce rain contamination. Atmospheric Environment 21: 893–900.
Dawson, T. E. (1993). Water sources of plants as determined from xylem-water isotopic composition: perspectives on plant competition, distribution, and water relations. In Stable Isotopes and Plant Carbon–Water Relations, eds. Ehleringer, J. R., Hall, A. E., and Farquhar, G. D., pp. 465–496. San Diego, CA: Academic Press.
Dawson, T. E. (1998). Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117: 476–485.
Dawson, T. E., and Ehleringer, J. R. (1998). Plants, isotopes and water use: a catchment-scale perspective. In Isotope Tracers in Catchment Hydrology, eds. Kendall, C. and McDonnell, J. J., pp. 165–202. Amsterdam, Elsevier.
Dawson, T. E., and Vidiella, P. E. (1998). Plant–fog interactions in California and Chile. In Proceedings of the 1st International Conference on Fog and Fog Collection, eds. Schemenauer, R. S. and Bridgman, H., pp. 225–228. Ottawa, Canada: IDRC.
Eugster, W. (2007). The relevance of fog for the vegetation: is it the water or the nutrients that matter? In Proceedings of the 4th International Conference on Fog, Fog Collection and Dew, eds. Biggs, A. and Cereceda, P., pp. 359–362. Santiago de Chile: Catholic University.
Federer, B., Brichet, N., and Jouzel, J. (1982). Stable isotopes in hailstones. I. The isotopic cloud model. Journal of the Atmospheric Sciences 39: 1323–1335.
Feild, T. S., and Dawson, T. E. (1998). Water sources used by Didymopanax pittieri at different life stages in a tropical cloud forest. Ecology 79: 1448–1452.
Fischer, D. T., and Still, C. J. (2007). Evaluating patterns of fog water deposition and isotopic composition on the California Channel Islands. Water Resources Research 43: W04420, doi:101029/2006WR005124.
Fischer, D. T., Still, C. J., and Williams, A. P. (2009). Significance of summer fog and overcast for drought stress and ecological functioning of coastal California endemic plant species, Journal of Biogeography 36: 783–799.
García Santos, G. (2007). An ecohydrological and soils study in a subtropical montane cloud forest in the National Park of Garajonay, La Gomera, (Canary Island, spain). Ph.D. thesis, VU University Amsterdam, Amsterdam, The Netherlands. Available at www.falw.vu.nl/nl/onderzoek/earth-sciences/geo-environmental-science-and-hydrology/hydrology-dissertations/index.asp.
Gat, J. R. (2000). Atmospheric water balance: the isotopic perspective. Hydrological Processes 14: 1357–1369.
Gedzelman, S. D., and Arnold, R. (1994). Modeling the isotopic composition of precipitation. Journal of Geophysical Research 99: 10 455–10 471.
Glickman, T. S. (2000). Glossary of Meteorology, 2nd edn. Boston, MA: American Meteorological Society. Also available at http://amsglossary.allenpress.com/glossary.
Goller, R., Wilcke, W., Leng, M., et al. (2005). Tracing water paths through small catchments under a tropical montane rain forest in south Ecuador by an oxygen isotope approach. Journal of Hydrology 308: 67–80.
Gonfiantini, R., and Longinelli, A. (1962). Oxygen isotopic composition of fogs and rains from the North Atlantic. Experientia 18: 222–223.
Holwerda, F., Burkard, R., Eugster, W., et al. (2006). Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water-budget and eddy covariance methods. Hydrological Processes 20: 2669–2692.
Ingraham, N. L., and Criss, R. E. (1993). Effects of surface area and volume on the rate of isotopic exchange between water and water vapor. Journal of Geophysical Research (Atmospheres) 98: 20 547–20 553.
Ingraham, N. L., and Mark, A. F. (2000). Isotopic assessment of the hydrological importance of fog deposition on tall snow tussock grass on southern New Zealand uplands. Austral Ecology 25: 402–408.
Ingraham, N. L., and Matthews, R. A. (1988). Fog drip as a source of groundwater recharge in northern Kenya. Water Resources Research 24: 1406–1410.
Ingraham, N. L., and Matthews, R. A. (1990). A stable isotope study of fog: the Point Reyes Peninsula, California, U.S.A. Chemical Geology (Isotope Geoscience Section) 80: 281–290.
Ingraham, N. L., and Matthews, R. A.. (1995). The importance of fog drip water to vegetation: Point Reyes Peninsula, California. Journal of Hydrology 164: 269–285.
Jouzel, J., Merlivat, L., and Roth, E. (1975). Isotopic study of hail. Journal of Geophysical Research 80: 5015–5030.
Kendall, C. (1992). Temporal, spatial and species effects on the oxygen and hydrogen isotopic compositions of throughfall. EOS, Transactions of the American Geophysical Union 73: 160.
Kerfoot, O. (1968). Mist precipitation on vegetation. Forestry Abstracts 29: 8–20.
Landon, M. K., Delin, G. N., Komor, S. C., and Regan, C. P. (1999). Comparison of the stable-isotopic composition of soil water collected from suction lysimeters, wick samplers, and cores in a sandy unsaturated zone, Journal of Hydrology 224: 45–54.
Liu, W. J., Zhang, Y. P., Li, H. M., and Liu, H. M. (2005). Fog drip and its relation to groundwater in the tropical seasonal rain forest of Xishuangbanna, Southwest China. Water Research 39: 787–794.
Liu, W. J., Liu, W. Y., Li, P. J., et al. (2007). Using stable isotopes to determine sources of fog drip in a tropical seasonal rain forest of Xishuangbanna, SW China. Agricultural and Forest Meteorology 143: 80–91.
Maloszewski, P., and Zuber, A. (1982). Determining the turnover time of groundwater systems with the aid of environmental tracers. I. Models and their applicability. Journal of Hydrology 57: 207–231.
Martinelli, L. A., Victoria, R. L., Sternberg, L. S. L., Ribeiro, A., and Moreira, M. Z. (1996). Using stable isotopes to determine sources of evaporated water to the atmosphere in the Amazon basin. Journal of Hydrology 183: 191–204.
McDonnell, J. J., Bonell, M., Stewart, M. K., and Pearce, A. J. (1990). Deuterium variations in storm rainfall: implications for stream hydrograph separation. Water Resources Research 26: 455–458.
McGuire, K. J., DeWalle, D. R., and Gburek, W. J. (2002). Evaluation of mean residence time in subsurface waters using oxygen-18 fluctuations during drought conditions in the mid-Appalachians. Journal of Hydrology 261: 132–149.
McJannet, D. L., Wallace, J. S., and Reddell, P. (2007). Precipitation interception in Australian tropical rainforests. II. Altitudinal gradient of cloud interception, stemflow, throughfall and interception. Hydrological Processes 21: 1703–1718.
Meinzer, F. C., Andrade, J. L., Goldstein, G., et al. (1999). Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121: 293–301.
Mook, W. G., and Vries, J. J. (2001). Environmental Isotopes in the Hydrological Cycle: Principles and Applications, Vol. I, Introduction: Theory, Methods, Review. Paris: UNESCO, and Vienna: IAEA. Also available at www.iaea.org/programmes/ripc/ih/volumes/volume1.htm.
Nespor, V., and Sevruk, B. (1999). Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. Journal of Atmospheric and Oceanic Technology 16: 450–464.
Revesz, K., and Woods, P. H. (1990). A method to extract soil water for stable isotope analysis. Journal of Hydrology 115: 397–406.
Rhodes, A. L., Guswa, A. J., and Newell, S. E. (2006). Seasonal variation in the stable isotopic composition of precipitation in the tropical montane forests of Monteverde, Costa Rica. Water Resources Research 42, W11402, doi:10.1029/2005WR004535.
Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R. (1993). Isotopic patterns in modern global precipitation. In Climate Change in Continental Isotopic Records, eds. Swart, P. K., Lohman, K. C., McKenzie, J., and Savin, S., pp. 1–36. Washington, DC: American Geophysical Union.
Salati, E., Dall'Olio, A., Matsui, E., and Gat, J. R. (1979). Recycling of water in the Amazon basin: an isotopic study. Water Resources Research 15: 1250–1258.
Saxena, R. K. (1986). Estimation of canopy reservoir capacity and oxygen-18 fractionation in throughfall in a pine forest. Nordic Hydrology 17: 251–260.
Scholl, M. A., Ingebritsen, S. E., Janik, C. J., and Kauahikaua, J. P. (1995). An isotope hydrology study of the Kilauea Volcano area, Hawaii U.S. Geological Survey Water Resources Investigations Report No. 95–4213. Washington, DC: U.S. Government Printing Office.
Scholl, M. A., Gingerich, S. B., and Tribble, G. W. (2002). The influence of microclimates and fog on stable isotope signatures used in interpretation of regional hydrology: East Maui, Hawaii. Journal of Hydrology 264: 170–184.
Scholl, M. A., Shanley, J. B., and Troester, J. W. (2006). Stable isotope measurements of rain, cloud water, and streams in the Luquillo mountains, Puerto Rico, Geological Society of America, Abstracts with Programs 38(7): 97.
Scholl, M. A., Giambelluca, T. W., Gingerich, S. B., Nullet, M. A., and Loope, L. L. (2007). Cloud water in windward and leeward mountain forests: the stable isotope signature of orographic cloud water. Water Resources Research 43: W12411, doi:101029/2007WR006011.
Siegenthaler, U., and Oeschger, H. (1980). Correlation of 18O in precipitation with temperature and altitude. Nature 285: 314–317.
Sklash, M. G., and Farvolden, R. N. (1979). The role of groundwater in storm runoff. Journal of Hydrology 43: 45–65.
Sklash, M. G., Farvolden, R. N., and Fritz, P. (1976). A conceptual model of watershed response to rainfall, developed through the use of oxygen-18 as a natural tracer. Canadian Journal of Earth Sciences 13: 271–283.
Still, C. J., Foster, P. N., Pounds, A., and Williams, A. (2003). Preliminary measurements of oxygen-18 and hydrogen-2 in water samples collected from a cloud forest in Monteverde, Costa Rica. EOS, Transactions of the American Geophysical Union, Fall Meeting Supplement 84: Abstract B31E-0348.
Te Linde, A. H., Bruijnzeel, L. A., Groen, J., Scatena, F. N., and Meijer, H. A. J. (2001). Stable isotopes in rainfall and fog in the Luquillo Mountains, eastern Puerto Rico: a preliminary study. In Proceedings of the 2nd International Conference on Fog and Fog Collection, eds. Schemenauer, R. S. and Puxbaum, H. A., pp. 181–184. Ottawa, Canada: IDRC.
Thalmann, E., Burkard, R., Wrzesinsky, T., Eugster, W., and Klemm, O. (2002). Ion fluxes from fog and rain to an agricultural and a forest ecosystem in Europe. Atmospheric Research 64: 147–158.
Thorburn, P. J., Hatton, T. J., and Walker, G. R. (1993a). Combining measurements of transpiration and stable isotopes of water to determine groundwater discharge from forests. Journal of Hydrology 150: 563–587.
Thorburn, P. J., Walker, G. R., and Brunel, J. -P. (1993b). Extraction of water from Eucalyptus trees for analysis of deuterium and oxygen-18: laboratory and field techniques. Plant, Cell, and Environment 16: 269–277.
Wang, X. -F., and Yakir, D. (2000). Using stable isotopes of water in evapotranspiration studies. Hydrological Processes 14: 1407–1421.
West, A. G., Patrickson, S. J., and Ehleringer, J. R. (2006). Water extraction times for plant and soil materials used in stable isotope analysis. Rapid Commmunications in Mass Spectrometry 20: 1317–1321.
White, J. W. C., Cook, E. R., Lawrence, J. R., and Broecker, W. S. (1985). The D/H ratios of sap in trees: implications for water sources and tree ring D/H ratios. Geochimica et Cosmochimica Acta 49: 237–246.
Zadroga, F. (1981). The hydrological importance of a montane cloud forest area of Costa Rica. In Tropical Agricultural Hydrology, eds. Lal, R. and Russell, E. W., pp. 59–73. New York: John Wiley.