Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T15:35:08.735Z Has data issue: false hasContentIssue false

Chapter 2 - Stroke after open arterial surgery

from Section I - Iatrogenic ischemic strokes: peri- and postoperative strokes

Published online by Cambridge University Press:  20 October 2016

Alexander Tsiskaridze
Affiliation:
Sarajishvili Institute of Neurology, Tblisi State University, Georgia
Arne Lindgren
Affiliation:
Department of Neurology, University Hospital Lund, Sweden
Adnan I. Qureshi
Affiliation:
Department of Neurology, University of Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Treatment-Related Stroke
Including Iatrogenic and In-Hospital Strokes
, pp. 12 - 22
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet. 1996; 348(9038):1329–39.Google Scholar
Sigvant, B, Wiberg-Hedman, K, Bergqvist, D, et al. A population-based study of peripheral arterial disease prevalence with special focus on critical limb ischemia and sex differences. J Vasc Surg. 2007; 45(6):1185–91.Google Scholar
Steg, P G, Bhatt, D L, Wilson, P W, et al. One-year cardiovascular event rates in outpatients with atherothrombosis. JAMA. 2007; 297(11):1197–206.Google Scholar
Diehm, C, Allenberg, J R, Pittrow, D, et al. Mortality and vascular morbidity in older adults with asymptomatic versus symptomatic peripheral artery disease. Circulation. 2009; 120(21):2053–61.Google Scholar
Clark, C E, Taylor, R S, Shore, A C, Ukoumunne, O C, Campbell, J L. Association of a difference in systolic blood pressure between arms with vascular disease and mortality: a systematic review and meta-analysis. Lancet. 2012; 379(9819):905–14.Google Scholar
Naylor, A R, Bown, M J. Stroke after cardiac surgery and its association with asymptomatic carotid disease: an updated systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2011; 41(5):607–24.Google Scholar
Ballotta, E, Renon, L, Da Giau, G, et al. Prospective randomized study on asymptomatic severe carotid stenosis and perioperative stroke risk in patients undergoing major vascular surgery: prophylactic or deferred carotid endarterectomy? Ann Vasc Surg. 2005; 19(6):876–81.Google Scholar
Bergqvist, D, Rosén, M. Health technology assessment in surgery. Scand J Surg. 2012; 101(2):132–7.Google Scholar
Patel, H J, Nguyen, C, Diener, A C, et al. Open arch reconstruction in the endovascular era: analysis of 721 patients over 17 years. J Thorac Cardiovasc Surg. 2011; 141(6):1417–23.Google Scholar
Sundt, T M 3rd, Orszulak, T A, Cook, D J, Schaff, H V. Improving results of open arch replacement. Ann Thorac Surg. 2008; 86(3):787–96.Google Scholar
Schermerhorn, M L, Giles, K A, Hamdan, A D, et al. Population-based outcomes of open descending thoracic aortic aneurysm repair. J Vasc Surg. 2008; 48(4):821–7.Google Scholar
Nakamura, K, Nakamura, E, Yano, M, et al. Factors influencing permanent neurologic dysfunction and mortality after total arch replacement with separate arch vessel grafting using selective cerebral perfusion. Ann Thorac Cardiovasc Surg. 2011; 17(1):3944.Google Scholar
Cheng, G, Zhang, L. [Adverse events related to bevacizumab and the management principles in non-small cell lung cancer]. Zhongguo Fei Ai Za Zhi. 2010; 13(6):563–7.Google Scholar
Gupta, P K, Pipinos, I I, Miller, W J, et al. A population-based study of risk factors for stroke after carotid endarterectomy using the ACS NSQIP database. J Surg Res. 2011; 167(2):182–91.Google Scholar
Parlani, G, De Rango, P, Cieri, E, et al. Diabetes is not a predictor of outcome for carotid revascularization with stenting as it may be for carotid endarterectomy. J Vasc Surg. 2012; 55(1):7989.Google Scholar
Rothwell, P M, Slattery, J, Warlow, C P. A systematic comparison of the risks of stroke and death due to carotid endarterectomy for symptomatic and asymptomatic stenosis. Stroke. 1996; 27(2):266–9.Google Scholar
Naylor, A R, Rothwell, P M, Bell, P R. Overview of the principal results and secondary analyses from the European and North American randomised trials of endarterectomy for symptomatic carotid stenosis. Eur J Vasc Endovasc Surg. 2003; 26(2):115–29.Google Scholar
Antonopoulos, C N, Kakisis, J D, Sergentanis, T N, Liapis, C D. Eversion versus conventional carotid endarterectomy: a meta-analysis of randomised and non-randomised studies. Eur J Vasc Endovasc Surg. 2011; 42(6):751–65.Google Scholar
Economopoulos, K P, Sergentanis, T N, Tsivgoulis, G, Mariolis, A D, Stefanadis, C. Carotid artery stenting versus carotid endarterectomy: a comprehensive meta-analysis of short-term and long-term outcomes. Stroke. 2011; 42(3):687–92.Google Scholar
Usman, A A, Tang, G L, Eskandari, M K. Metaanalysis of procedural stroke and death among octogenarians: carotid stenting versus carotid endarterectomy. J Am Coll Surg. 2009; 208(6):1124–31.Google Scholar
Stromberg, S, Gelin, J, Osterberg, T, et al. Very urgent carotid endarterectomy confers increased procedural risk. Stroke. 2012; 43(5):1331–5.Google Scholar
Adriaensen, M E, Bosch, J L, Halpern, E F, Myriam Hunink, M G, Gazelle, G S. Elective endovascular versus open surgical repair of abdominal aortic aneurysms: systematic review of short-term results. Radiology. 2002; 224(3):739–47.Google Scholar
Blankensteijn, J D. Mortality and morbidity rates after conventional abdominal aortic aneurysm repair. Semin Interv Cardiol. 2000; 5(1):713.Google ScholarPubMed
Schermerhorn, M L, O’Malley, A J, Jhaveri, A, et al. Endovascular vs. open repair of abdominal aortic aneurysms in the Medicare population. N Engl J Med. 2008; 358(5):464–74.Google Scholar
Kikura, M, Takada, T, Sato, S. Preexisting morbidity as an independent risk factor for perioperative acute thromboembolism syndrome. Arch Surg. 2005; 140(12):1210–7.Google Scholar
Ng, J L, Chan, M T, Gelb, A W. Perioperative stroke in noncardiac, nonneurosurgical surgery. Anesthesiology. 2011; 115(4):879–90.Google Scholar
Bijker, J B, Persoon, S, Peelen, L M, et al. Intraoperative hypotension and perioperative ischemic stroke after general surgery: a nested case-control study. Anesthesiology. 2012; 116(3):658–64.Google Scholar
Parikh, S, Cohen, J R. Perioperative stroke after general surgical procedures. N Y State J Med. 1993; 93(3):162–5.Google Scholar
Larsen, S F, Zaric, D, Boysen, G. Postoperative cerebrovascular accidents in general surgery. Acta Anaesthesiol Scand. 1988; 32(8):698701.Google Scholar
Limburg, M, Wijdicks, E F, Li, H. Ischemic stroke after surgical procedures: clinical features, neuroimaging, and risk factors. Neurology. 1998; 50(4):895901.Google Scholar
Sobel, M, Verhaeghe, R. Antithrombotic therapy for peripheral artery occlusive disease: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008; 133(6 Suppl):815S-43S.Google Scholar
Lindblad, B, Persson, N H, Takolander, R, Bergqvist, D. Does low-dose acetylsalicylic acid prevent stroke after carotid surgery? A double-blind, placebo-controlled randomized trial. Stroke. 1993; 24(8):1125–8.Google Scholar
Sharpe, R Y, Dennis, M J, Nasim, A, et al. Dual antiplatelet therapy prior to carotid endarterectomy reduces post-operative embolisation and thromboembolic events: post-operative transcranial Doppler monitoring is now unnecessary. Eur J Vasc Endovasc Surg. 2010; 40(2):162–7.Google Scholar
Payne, D A, Jones, C I, Hayes, P D, et al. Beneficial effects of clopidogrel combined with aspirin in reducing cerebral emboli in patients undergoing carotid endarterectomy. Circulation. 2004; 109(12):1476–81.Google Scholar
O’Neil-Callahan, K, Katsimaglis, G, Tepper, M R, et al. Statins decrease perioperative cardiac complications in patients undergoing noncardiac vascular surgery: the Statins for Risk Reduction in Surgery (StaRRS) study. J Am Coll Cardiol. 2005; 45(3):336–42.Google Scholar
Durazzo, A E, Machado, F S, Ikeoka, D T, et al. Reduction in cardiovascular events after vascular surgery with atorvastatin: a randomized trial. J Vasc Surg. 2004; 39(5):967–75.Google Scholar
Sillesen, H, Amarenco, P, Hennerici, M G, et al. Atorvastatin reduces the risk of cardiovascular events in patients with carotid atherosclerosis: a secondary analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial. Stroke. 2008; 39(12):3297–302.Google Scholar
Kennedy, J, Quan, H, Buchan, A M, Ghali, W A, Feasby, T E. Statins are associated with better outcomes after carotid endarterectomy in symptomatic patients. Stroke. 2005; 36(10):2072–6.Google Scholar
McGirt, M J, Perler, B A, Brooke, B S, et al. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors reduce the risk of perioperative stroke and mortality after carotid endarterectomy. J Vasc Surg. 2005; 42(5):829–36.Google Scholar
Sharpe, R, Sayers, R D, McCarthy, M J, et al. The war against error: a 15 year experience of completion angioscopy following carotid endarterectomy. Eur J Vasc Endovasc Surg. 2012; 43(2):139–45.Google Scholar
Rockman, C B, Halm, E A. Intraoperative imaging: does it really improve perioperative outcomes of carotid endarterectomy? Semin Vasc Surg. 2007; 20(4):236–43.Google Scholar
Wallaert, J B, Goodney, P P, Vignati, J J, et al. Completion imaging after carotid endarterectomy in the Vascular Study Group of New England. J Vasc Surg. 2011; 54(2):376–85, 85 e13.Google Scholar
Bond, R, Rerkasem, K, Rothwell, P M. Systematic review of the risks of carotid endarterectomy in relation to the clinical indication for and timing of surgery. Stroke. 2003; 34(9):2290–301.Google Scholar
Turnipseed, W D, Berkoff, H A, Belzer, F O. Postoperative stroke in cardiac and peripheral vascular disease. Ann Surg. 1980; 192(3):365–8.Google Scholar
Liapis, C D, Bell, P R, Mikhailidis, D, Sivenius, J, et al. ESVS guidelines. Invasive treatment for carotid stenosis: indications, techniques. Eur J Vasc Endovasc Surg. 2009; 37(4 Suppl):119.CrossRefGoogle ScholarPubMed
Plate, G, Hollier, L H, O’Brien, P C, Pairolero, P C, Cherry, K J. Late cerebrovascular accidents after repair of abdominal aortic aneurysms. Acta Chir Scand. 1988; 154(1):25–9.Google Scholar
Harris, E J Jr., Moneta, G L, Yeager, R A, Taylor, L M Jr., Porter, J M. Neurologic deficits following noncarotid vascular surgery. Am J Surg. 1992; 163(5):537–40.Google Scholar
Pomposelli, F B, Kansal, N, Hamdan, A D, et al. A decade of experience with dorsalis pedis artery bypass: analysis of outcome in more than 1000 cases. J Vasc Surg. 2003; 37(2):307–15.Google Scholar
Liapis, C D, Kakisis, J D, Dimitroulis, D A, et al. Carotid ultrasound findings as a predictor of long-term survival after abdominal aortic aneurysm repair: a 14-year prospective study. J Vasc Surg. 2003; 38(6):1220–5.Google Scholar
Blankensteijn, J D, de Jong, S E, Prinssen, M, et al. Two-year outcomes after conventional or endovascular repair of abdominal aortic aneurysms. N Engl J Med. 2005; 352(23):2398–405.Google Scholar
Endovascular aneurysm repair versus open repair in patients with abdominal aortic aneurysm (EVAR trial 1): randomised controlled trial. Lancet. 2005; 365(9478):2179–86.Google Scholar
Jensen, L P, Lepantalo, M, Fossdal, J E, et al. Dacron or PTFE for above-knee femoropopliteal bypass. a multicenter randomised study. Eur J Vasc Endovasc Surg. 2007; 34(1):44–9.Google Scholar
Biancari, F, Salenius, J P, Heikkinen, M, et al. Risk-scoring method for prediction of 30-day postoperative outcome after infrainguinal surgical revascularization for critical lower-limb ischemia: a Finnvasc registry study. World J Surg. 2007; 31(1):217–25.Google Scholar
Cherr, GS, Wang, J, Zimmerman, P M, Dosluoglu, H H. Depression is associated with worse patency and recurrent leg symptoms after lower extremity revascularization. J Vasc Surg. 2007; 45(4):744–50.Google Scholar
Lederle, F A, Freischlag, J A, Kyriakides, T C, et al. Outcomes following endovascular vs open repair of abdominal aortic aneurysm: a randomized trial. JAMA. 2009; 302(14):1535–42.Google Scholar
Lange, C P, Ploeg, A J, Lardenoye, J W, Breslau, P J. Patient- and procedure-specific risk factors for postoperative complications in peripheral vascular surgery. Qual Saf Health Care. 2009; 18(2):131–6.Google Scholar
Gisbertz, S S, Ramzan, M, Tutein Nolthenius, R P, et al. Short-term results of a randomized trial comparing remote endarterectomy and supragenicular bypass surgery for long occlusions of the superficial femoral artery [the REVAS trial]. Eur J Vasc Endovasc Surg. 2009; 37(1):6876.Google Scholar
Brown, L C, Thompson, S G, Greenhalgh, R M, Powell, J T. Incidence of cardiovascular events and death after open or endovascular repair of abdominal aortic aneurysm in the randomized EVAR trial 1. Br J Surg. 2011; 98(7):935–42.Google Scholar
Becquemin, J P, Pillet, J C, Lescalie, F, et al. A randomized controlled trial of endovascular aneurysm repair versus open surgery for abdominal aortic aneurysms in low- to moderate-risk patients. J Vasc Surg. 2011; 53(5):1167–73 e1.Google Scholar
Svensson, L G, Crawford, E S, Hess, K R, Coselli, J S, Safi, H J. Variables predictive of outcome in 832 patients undergoing repairs of the descending thoracic aorta. Chest. 1993; 104(4):1248–53.Google Scholar
Borst, H G, Jurmann, M, Buhner, B, Laas, J. Risk of replacement of descending aorta with a standardized left heart bypass technique. J Thorac Cardiovasc Surg. 1994; 107(1):126–32.Google Scholar
Kouchoukos, N T, Masetti, P, Rokkas, C K, Murphy, S F, Blackstone, E H. Safety and efficacy of hypothermic cardiopulmonary bypass and circulatory arrest for operations on the descending thoracic and thoracoabdominal aorta. Ann Thorac Surg. 2001; 72(3):699707.Google Scholar
Brandt, M, Hussel, K, Walluscheck, K P, et al. Stent-graft repair versus open surgery for the descending aorta: a case-control study. J Endovasc Ther. 2004; 11(5):535–8.Google Scholar
Coselli, J S, LeMaire, S A, Conklin, L D, Adams, G J. Left heart bypass during descending thoracic aortic aneurysm repair does not reduce the incidence of paraplegia. Ann Thorac Surg. 2004; 77(4):1298–303.Google Scholar
Estrera, A L, Miller, C C 3rd, Chen, E P, et al. Descending thoracic aortic aneurysm repair: 12-year experience using distal aortic perfusion and cerebrospinal fluid drainage. Ann Thorac Surg. 2005; 80(4):1290–6.Google Scholar
Stone, D H, Brewster, D C, Kwolek, C J, et al. Stent-graft versus open-surgical repair of the thoracic aorta: mid-term results. J Vasc Surg. 2006; 44(6):1188–97.Google Scholar
Khaladj, N, Shrestha, M, Meck, S, et al. Hypothermic circulatory arrest with selective antegrade cerebral perfusion in ascending aortic and aortic arch surgery: a risk factor analysis for adverse outcome in 501 patients. J Thorac Cardiovasc Surg. 2008; 135(4):908–14.Google Scholar
Kulik, A, Castner, C F, Kouchoukos, N T. Outcomes after thoracoabdominal aortic aneurysm repair with hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2011; 141(4):953–60.Google Scholar
Thomas, M, Li, Z, Cook, D J, Greason, K L, Sundt, T M. Contemporary results of open aortic arch surgery. J Thorac Cardiovasc Surg. 2012; 144(4):838–44.Google Scholar
Kragsterman, B, Logason, K, Ahari, A, et al. Risk factors for complications after carotid endarterectomy: a population-based study. Eur J Vasc Endovasc Surg. 2004; 28(1):98103.Google Scholar
Halliday, A, Mansfield, A, Marro, J, et al. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. Lancet. 2004; 363(9420):1491–502.Google Scholar
Brott, T G, Hobson, R W, 2nd, Howard, G, et al. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med. 2010; 363(1):1123.Google Scholar
Halliday, A, Harrison, M, Hayter, E, et al. 10-year stroke prevention after successful carotid endarterectomy for asymptomatic stenosis (ACST-1): a multicentre randomised trial. Lancet. 2010; 376(9746):1074–84.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×