Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-02T22:59:38.585Z Has data issue: false hasContentIssue false

Chapter 6 - Stroke in trauma patients

from Section I - Iatrogenic ischemic strokes: peri- and postoperative strokes

Published online by Cambridge University Press:  20 October 2016

Alexander Tsiskaridze
Affiliation:
Sarajishvili Institute of Neurology, Tblisi State University, Georgia
Arne Lindgren
Affiliation:
Department of Neurology, University Hospital Lund, Sweden
Adnan I. Qureshi
Affiliation:
Department of Neurology, University of Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Treatment-Related Stroke
Including Iatrogenic and In-Hospital Strokes
, pp. 58 - 62
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Farooq, M U, Reeves, M J, Gargano, J, et al. In-hospital stroke in a statewide registry. Cerebrovasc Dis. 2008; 25:1220.CrossRefGoogle Scholar
Blacker, D J, Wijdicks, E F. Clinical characteristics and mechanisms of stroke after polytrauma. Mayo Clin Proc. 2004; 79:630–5.Google Scholar
Cothren, C C, Moore, E E. Blunt cerebrovascular injuries. Clinics. 2005; 60:489–96.Google Scholar
Lucas, C, Moulin, T, Deplanque, D, Tatu, L, Chavot, D. Stroke patterns of internal carotid artery dissection in 40 patients. Stroke. 1998; 29:2646–8.Google Scholar
Mokri, B, Piepgras, D G, Houser, O W. Traumatic dissections of the extracranial internal carotid artery. J Neurosurg. 1988; 68:189–97.Google Scholar
Ringer, A J, Matern, E, Parikh, S, Levine, N B. Screening for blunt cerebrovascular injury: selection criteria for use of angiography. J Neurosurg. 2010; 112:1146–9.CrossRefGoogle ScholarPubMed
Wang, A C, Charters, M A, Thawani, J P, et al. Evaluating the use and utility of noninvasive angiography in diagnosing traumatic blunt cerebrovascular injury. J Trauma Acute Care Surg. 2012; 72:1601–10.Google Scholar
Clancy, T V, Gary, M J, Covington, D L, Brinker, C C, Blackman, D. A statewide analysis of level I and II trauma centers for patients with major injuries. J Trauma. 2001; 51:346–51.Google Scholar
Corti, R, Alerci, M, Tosi, C, et al. Images in cardiovascular medicine. Cerebral arterial embolism from a protruding atheroma of the aortic arch after a nonpenetrating chest trauma. Circulation. 1999; 100:1009–10.Google Scholar
Dennis, M S, Lo, K M, McDowall, M, West, T. Fractures after stroke. Stroke. 2002; 33:728–34.Google Scholar
Jauch, E C, Saver, J L, Adams, H P, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013; 44:870947.Google Scholar
Ahmad, N, Ward, E, Natarajan, I, Roffe, C. Intravenous stroke thrombolysis in the presence of traumatic bone fractures. Cerebrovasc Dis. 2012; Supp 2:83.Google Scholar
Cohen, J E, Gomori, J M, Grigoriadis, S, et al. Intra-arterial thrombolysis and stent placement for traumatic carotid dissection with subsequent stroke: A combined simultaneous endovascular approach. J Neurol Sciences. 2008; 269:172–5.Google Scholar
Sugrue, P A, Hage, Z A, Surdell, D L, et al. Basilar artery occlusion following C1 lateral mass fracture managed by mechanical and pharmacological thrombolysis. Neurocritical Care. 2009; 11:255–60.Google Scholar
Furlan, A J. Endovascular therapy for stroke: it’s about time. N Engl J Med. 2015; 45:35–8.Google Scholar
Powers, W J, Derdeyn, C P, Biller, J, et al. AHA/ASA focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment. Stroke. 2015; published before print June 29, 2015.Google Scholar
Stein, D M, Boswell, S, Sliker, C W, Lui, F Y, Scalea, T M. Blunt cerebrovascular injuries: does treatment always matter? J Trauma. 2009; 66:132–43.Google ScholarPubMed
Cothren, C C, Biffl, W L, Moore, E E, Kashuk, J L, Johnson, J L. Treatment for blunt cerebrovascular injuries: equivalence of anticoagulation and antiplatelet agents. Arch Surg. 2009; 144:685–90.Google Scholar
Callcut, R A, Hanseman, D J, Solan, P D, et al. Early treatment of blunt cerebrovascular injury with concomitant hemorrhagic neurological injury is safe and effective. J Trauma Acute Care Surg. 2012; 72:338–45.Google Scholar
Davis, J W, Holbrook, T L, Hoyt, D B, et al. Blunt carotid dissection: incidence, associated injuries, screening and treatment. J Trauma. 1990; 30:1514–17.Google Scholar
Anson, J, Cromwell, R M. Cervicocranial arterial dissection. Neurosurgery. 1991; 29:8996.CrossRefGoogle ScholarPubMed
Wahl, W L, Brandt, M M, Thompson, B G, Taheri, P A, Greefield, L J. Antiplatelet therapy: an alternative to heparin for blunt carotid injury. J Trauma. 2002; 52:896901.Google Scholar
Cothren, C C, Moore, E E, Biffl, W L, et al. Anticoagulation is the gold standard therapy for blunt carotid injuries to reduce stroke rate. Arch Surg. 2004; 139:545–6.Google Scholar
DiCocco, J M, Fabian, T C, Emmett, K P, et al. Optimal outcomes for patients with blunt cerebrovascular injury (BCVI): tailoring treatment to the lesion. J Am Coll Surg. 2011; 212:547–9.Google Scholar
Cothren, C C, Moore, E E, Ray, C E, et al. Carotid artery stents for blunt cerebrovascular injury: risks exceed benefits. Arch Surg. 2005; 140:480–5.Google Scholar
International Stroke Trial Collaborative Group. The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both or neither among 19 435 patients with acute ischaemic stroke. Lancet. 1997; 349:1569–81.Google Scholar
Chen, Y H, Kang, J H, Lin, H C. Patients with traumatic brain injury. Population-based study suggests increased risk of stroke. Stroke. 2011; 42:2733–9.Google Scholar
Glenn, M B. Sudden cardiac death and stroke with use of antipsychotic medications: Implications for clinicians treating individuals with traumatic brain injury. J Head Trauma Rehabil. 2010; 25:6870.Google Scholar
Blacker, D J. NSAIDS and stroke risk. Med J Aust. 2011; 41:488.Google Scholar
Wu, J C, Chen, Y C, Liu, L, et al. Increased risk of stroke after spinal cord injury. Neurology. 2012; 78:1051–7.Google Scholar
Rothwell, P M. Does blood pressure variability modulate cardiovascular risk? Curr Hypertens Rep. 2011; 13:177–86.Google Scholar
Weinhardt, J, Jacobson, K. Stroke assessment in the perioperative patient. Orthop Nurs. 2012; 31:21–6.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×